Skip to main content
Log in

Analysis of electric field electrode distribution on dielectrophoresis abrasive flow for polishing internal surface of ceramic workpiece

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

For the polishing of the internal surfaces of thin-walled ceramic parts, a dielectrophoresis abrasive flow polishing (DAFP) method is proposed. A non-uniform electric field is applied on the outer wall of the ceramic part, and abrasives in polishing fluid are polarized in the region of non-uniform electric field. The polarized abrasives are moved to the internal surface of ceramic parts by dielectrophoretic forces, so that more abrasives will effectively participate in the process of polishing internal surface of the ceramic part. Theoretical analysis of the forces on the abrasive particle is carried out. The flow field and electric field of different electrode ratios are simulated using COMSOL, the optimal dielectrophoretic force coefficient (e1), and thickness of active layer (δ3 = 2.15 mm) can be obtained when ER = 3. The original internal surface roughness of the workpiece is at 208 ± 5 nm. After 10 h of polishing, the roughness values of the inner surface of the workpiece reached 23 nm and 51 nm respectively, with and without dielectrophoresis. The efficiency of dielectrophoresis abrasive flow polishing of the inner surface of ceramic workpieces has been validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

Yes.

References

  1. Lv Z, Huang C, Zhu H, Wang J, Wang Y, Yao P (2015) A research on ultrasonic-assisted abrasive waterjet polishing of hard-brittle materials. Int J Adv Manuf Technol 78(5-8):1361–1369. https://doi.org/10.1007/s00170-014-6528-6

    Article  Google Scholar 

  2. Liu D, Zhu H, Huang C, Wang J, Yao P (2016) Prediction model of depth of penetration for alumina ceramics turned by abrasive waterjet-finite element method and experimental study. Int J Adv Manuf Technol 87(9-12):2673–2682. https://doi.org/10.1007/s00170-016-8600-x

    Article  Google Scholar 

  3. Wang J, Moridi A, Mathew P (2011) Micro-grooving on quartz crystals by an abrasive air jet. Proc Inst Mech Eng C J Mech Eng Sci 225(C9):2161–2173. https://doi.org/10.1177/0954406211410260

    Article  Google Scholar 

  4. Xiao D, Wang M, Guo B, Weng D (2020) Effect of surface wetting behavior of ceramic proppant on the two-phase flow across the interface of sandstone and fracture. Energy Sci Eng 8(4):1330–1336. https://doi.org/10.1002/ese3.595

    Article  Google Scholar 

  5. Wang T, Cheng H, Tam H (2014) Mathematic models and material removal characteristics of multigesture jetting using magnetorheological fluid. Appl Opt 53(32):7804–7813. https://doi.org/10.1364/ao.53.007804

    Article  Google Scholar 

  6. Li P-yA, Cheung M-fM, Tong H, Cheng H, Yam Y (2014) Design and implementation of a technique for iterative magnetorheological jet polishing. Int J Optomechatronics 8(3):195–205. https://doi.org/10.1080/15599612.2014.915603

    Article  Google Scholar 

  7. Zhang FH, Yu XB, Zhang Y (2012) Analysis of tangential position error or removal function error in ultrasonic-magnetorheological combined finishing. Key Eng Mater 516:390–395

  8. El-Hofy H (2019) Vibration-assisted electrochemical machining: a review. Int J Adv Manuf Technol 105(1-4):579–593. https://doi.org/10.1007/s00170-019-04209-9

    Article  Google Scholar 

  9. Shan K, Zhou P, Zuo Y, Kang R, Guo D (2017) Analysis of the polishing ability of electrogenerated chemical polishing. Precis Eng-J Int Soc Precis Eng Nanotechnol 47:122–130. https://doi.org/10.1016/j.precisioneng.2016.07.013

  10. Ji S, Cao H, Zhao J, Pan Y, Jiang E (2019) Soft abrasive flow polishing based on the cavitation effect. Int J Adv Manuf Technol 101(5-8):1865–1878. https://doi.org/10.1007/s00170-018-2983-9

    Article  Google Scholar 

  11. Ramesha N, Siddaramaiah AS (2016) Abrasive water jet machining and mechanical behavior of Banyan tree saw dust powder loaded polypropylene green composites. Polym Compos 37(6):1754–1764. https://doi.org/10.1002/pc.23348

    Article  Google Scholar 

  12. Fu Y, Gao H, Yan Q, Wang X (2019) A new predictive method of the finished surface profile in abrasive flow machining process. Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology 60:497–505. https://doi.org/10.1016/j.precisioneng.2019.08.011

    Article  Google Scholar 

  13. Nagalingam AP, Thiruchelvam VC, Yeo SH (2019) A novel hydrodynamic cavitation abrasive technique for internal surface finishing. J Manuf Process 46:44–58. https://doi.org/10.1016/j.jmapro.2019.08.014

    Article  Google Scholar 

  14. Wei H, Wang X, Gao H, Peng C, Wang X (2019) A study on the influences of abrasive media's viscoelasticity on entrance effect in abrasive flow machining. J Manuf Sci E T ASME 141(6). https://doi.org/10.1115/1.4043454

  15. Steyer TE (2013) Shaping the future of ceramics for aerospace applications. Int J Appl Ceram Technol 10(3):389–394

    Article  Google Scholar 

  16. Seelig T, Meyer A, Gerstner P, Meier M, Jongmanns M, Baumann M, Heuveline V, Egbers C (2019) Dielectrophoretic force-driven convection in annular geometry under Earth's gravity. Int J Heat Mass Transf 139:386–398. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.068

    Article  Google Scholar 

  17. Ikeda H, Akagami Y (2013) Highly efficient polishing technology for glass substrates using tribo-chemical polishing with electrically controlled slurry. J Manuf Process 15(1):102–107. https://doi.org/10.1016/j.jmapro.2012.11.002

    Article  Google Scholar 

  18. Nishiguchi D, Iwasawa J, Jiang H-R, Sano M (2018) Flagellar dynamics of chains of active Janus particles fueled by an AC electric field. New J Phys 20:20. https://doi.org/10.1088/1367-2630/aa9b48

    Article  Google Scholar 

  19. Lapizco-Encinas BH (2019) Dielectrophoresis 2019. Electrophoresis 40(10):1385–1386

    Article  Google Scholar 

  20. Fujiwara R, Iguchi Y, Takahashi K, Saito S (2018) Humidity dependence of electrostatic pick-and-place operation of a micro dielectric particle considering surface conductivity and capillary condensation. J Appl Phys 124(6):064303. https://doi.org/10.1063/1.5022337

    Article  Google Scholar 

  21. Dolfo G, Vigue J, Lhuillier D (2020) Experimental test of unsteady Stokes' drag force on a sphere. Exp Fluids 61(4). https://doi.org/10.1007/s00348-020-2936-6

  22. Tang Y, Kriebitzsch SHL, Peters EAJF, van der Hoef MA, Kuipers JAM (2014) A methodology for highly accurate results of direct numerical simulations: drag force in dense gas-solid flows at intermediate Reynolds number. Int J Multiphase Flow 62:73–86. https://doi.org/10.1016/j.ijmultiphaseflow.2014.02.009

    Article  MathSciNet  Google Scholar 

  23. Ku X, Li T, Lovas T (2013) Influence of drag force correlations on periodic fluidization behavior in Eulerian-Lagrangian simulation of a bubbling fluidized bed. Chem Eng Sci 95:94–106. https://doi.org/10.1016/j.ces.2013.03.038

    Article  Google Scholar 

  24. Van der Hoef MA, Beetstra R, Kuipers JAM (2005) Lattice-Boltzmann simulations of low-Reynolds-number flow past mono- and bidisperse arrays of spheres: results for the permeability and drag force. J Fluid Mech 528:233–254. https://doi.org/10.1017/s0022112004003295

    Article  MathSciNet  MATH  Google Scholar 

  25. Rabets Y, Backholm M, Dalnoki-Veress K, Ryu WS (2014) Direct measurements of drag forces in C. elegans crawling locomotion. Biophys J 107(8):1980–1987. https://doi.org/10.1016/j.bpj.2014.09.006

    Article  Google Scholar 

  26. Kallio S, Peltola J, Niemi T (2015) Analysis of the time-averaged gas-solid drag force based on data from transient 3D CFD simulations of fluidized beds. Powder Technol 274:227–238. https://doi.org/10.1016/j.powtec.2015.01.029

    Article  Google Scholar 

  27. Qiu T, Lee T-C, Mark AG, Morozov KI, Münster R, Mierka O, Turek S, Fischer P (2014) Swimming by reciprocal motion at low Reynolds number. 5(1):3–11

  28. Wang Y-S, Huang W-X, Xu C-X (2016) Active control for drag reduction in turbulent channel flow: the opposition control schemes revisited. Fluid Dyn Res 48(5):055501. https://doi.org/10.1088/0169-5983/48/5/055501

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51775511, U1809221, 51805485), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY17E050022, LR17E050002, LGG19E050006), the China Postdoctoral Science Foundation (Grant No. 2019M652138), and the State Scholarship Fund of China (Certificate No: 201808330544). Furthermore, Qianfa Deng’s study at UC Irvine was partially supported by the China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Qianfa Deng and Tao Zheng; data curation, Xu Wang; formal analysis, Binghai Lyu and Xueliang Zhang; funding acquisition, Qianfa Deng; project administration, Qianfa Deng; supervision, Julong Yuan; writing–original draft, Tao Zheng; writing–review and editing, Qianfa Deng.

Corresponding authors

Correspondence to Tao Zheng or Julong Yuan.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Yes.

Consent for publication

Yes.

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Q., Zheng, T., Wang, X. et al. Analysis of electric field electrode distribution on dielectrophoresis abrasive flow for polishing internal surface of ceramic workpiece. Int J Adv Manuf Technol 113, 2355–2367 (2021). https://doi.org/10.1007/s00170-021-06726-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-06726-y

Keywords

Navigation