Skip to main content
Log in

Effect of tool microstructure on machining of titanium alloy TC21 based on simulation and experiment

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Titanium alloys have high corrosion resistance and specific strength, leading to a wide range of uses in a variety of industrial fields. However, machining performance is often very poor, causing serious difficulty during the cutting process. In particular, high cutting temperature and high chemical activity of titanium alloys during the cutting process lead to rapid tool wear. Within this research, specific tool microstructures cut onto the tool rake surface is explored to improve the cutting performance of titanium alloy TC21. In order to isolate the influence of particular tool microstructures on the cutting performance of titanium alloy TC21, a 3D orthogonal finite element model (OFEM) is utilized to simulate the cutting process of TC21 alloy. The impact of tool microstructure on chip formation, cutting force and temperature is thoroughly analyzed through turning simulations and experiments on titanium alloy TC21. Finally, a comprehensive comparison of cutting behaviors between textured and untextured tools during the cutting of titanium alloy TC21 was carried out. Cutting simulations indicate that tool microstructure can improve the cutting properties, reducing cutting temperature and cutting force. Research results confirm that chip serration and tool wear noticeably decreased, indicating tool texture can significantly improve cutting performance of titanium alloy TC21.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cotterell M, Byrne G (2008) Dynamics of chip formation during orthogonal cutting of titanium alloy Ti–6Al–4V. CIRP Ann 57(1):93–96. https://doi.org/10.1016/j.cirp.2008.03.007

    Article  Google Scholar 

  2. Wyen CF, Wegener K (2010) Influence of cutting edge radius on cutting forces in machining titanium. CIRP Ann 59(1):93–96. https://doi.org/10.1016/j.cirp.2010.03.056

    Article  Google Scholar 

  3. Tadeusz C, Damian P, Piotr S, Agata F (2018) Microstructure characterisation of Inconel 718 after laser assisted turning. MATEC Web Conf 188:02004. https://doi.org/10.1051/matecconf/201818802004

    Article  Google Scholar 

  4. Damian P, Tadeusz C (2017) The analysis of surface topography during turning of Waspaloy with the application of response surface method. MATEC Web Conf 136:02006. https://doi.org/10.1051/matecconf/201713602006

    Article  Google Scholar 

  5. Niinomi M (1998) Mechanical properties of biomedical titanium alloys. Mater Sci Eng A 243(1-2):231–236. https://doi.org/10.1016/S0921-5093(97)00806-X

    Article  Google Scholar 

  6. Jawaid A, Cheharon CH, Abdullah A (1999) Tool wear characteristics in turning of titanium alloy Ti-6246. J Mater Process Technol 92–93(3):329–334. https://doi.org/10.1016/S0924-0136(99)00246-0

    Article  Google Scholar 

  7. Venugopal KA, Paul S, Chattopadhyay AB (2007) Growth of tool wear in turning of Ti-6Al-4V alloy under cryogenic cooling. Wear 262(9):1071–1078. https://doi.org/10.1016/j.wear.2006.11.010

    Article  Google Scholar 

  8. Hong SY, Markus I, Jeong WC (2001) New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V. Int J Mach Tool Manu 41(15):2245–2260. https://doi.org/10.1016/S0890-6955(01)00041-4

    Article  Google Scholar 

  9. Wang ZG, Rahman M, Wong YS (2005) Tool wear characteristics of binderless CBN tools used in high-speed milling of titanium alloys. Wear 258(5):752–758. https://doi.org/10.1016/j.Wear.2004.09.066

    Article  Google Scholar 

  10. Che-Haron CH, Jawaid A (2005) The effect of machining on surface integrity of titanium alloy Ti–6%Al–4% V. J Mater Process Technol 166(2):188–192. https://doi.org/10.1016/j.jmatprotec.2004.08.012

    Article  Google Scholar 

  11. Colpani A, Fiorentino A, Ceretti E, Attanasio A (2019) Tool wear analysis in micromilling of titanium alloy. Precis Eng 57:83–94. https://doi.org/10.1016/j.precisioneng.2019.03.011

    Article  Google Scholar 

  12. Ayed Y, Germain G (2018) High-pressure water-jet-assisted machining of Ti555-3 titanium alloy: investigation of tool wear mechanisms. Int J Adv Manuf Technol 96:845–856. https://doi.org/10.1007/s00170-018-1661-2

    Article  Google Scholar 

  13. Moritz J, André S, Kopper M, Bretschneider J, Gumpinger J, Finaske T, Riede M, Schneewei M, López E, Brückner F, Leyens C, Rohr T, Ghidini T (2020) Hybrid manufacturing of titanium Ti-6Al-4V combining laser metal deposition and cryogenic milling. Int J Adv Manuf Technol 107:2995–3009. https://doi.org/10.1007/s00170-020-05212-1

    Article  Google Scholar 

  14. Oliver H, Zak L, Thomas M, Jackson M (2018) The effect of titanium alloy chemistry on machining induced tool crater wear characteristics. Wear 408-409:200–207. https://doi.org/10.1016/j.Wear.2018.05.020

    Article  Google Scholar 

  15. Zhao W, Gong L, Ren F, Li L, Xu Q, Khan AM (2018) Experimental study on chip deformation of Ti-6Al-4V titanium alloy in cryogenic cutting. Int J Adv Manuf Technol 96:4021–4027. https://doi.org/10.1007/s00170-018-1890-4

    Article  Google Scholar 

  16. Xiong RB, Wu HB (2016) Study on cutting mechanism of Ti6Al4V in ultra-precision machining. Int J Adv Manuf Technol 86(5-8):1–7. https://doi.org/10.1007/s00170-015-8304-7

    Article  Google Scholar 

  17. Qian XH, Duan XY, Zou JY (2020) Effects of different tool microstructures on the precision turning of titanium alloy TC21. Int J Adv Manuf Technol 106(6):5519–5526. https://doi.org/10.1007/s00170-020-05009-2

    Article  Google Scholar 

  18. Dong MK, Lee I, Sun KK, Bo HK, Park HW (2016) Influence of a micropatterned insert on characteristics of the tool–workpiece interface in a hard turning process. J Mater Process Technol 229:160–171. https://doi.org/10.1016/j.jmatprotec.2015.09.018

    Article  Google Scholar 

  19. Kawasegi N, Sugimori H, Morimoto H, Morita N, Hori I (2009) Development of cutting tools with microscale and nanoscale textures to improve frictional behavior. Precis Eng 33(3):248–254

    Article  Google Scholar 

  20. Enomoto T, Sugihara T (2010) Improving anti-adhesive properties of cutting tool surfaces by nano-/micro-textures. CIRP Ann 59(1):597–600. https://doi.org/10.1016/j.cirp.2010.03.130

    Article  Google Scholar 

  21. Sugihara T, Enomoto T (2013) Crater and flank wear resistance of cutting tools having micro textured surfaces. Precis Eng 37(4):888–896. https://doi.org/10.1016/j.precisioneng.2013.05.007

    Article  Google Scholar 

  22. Xie J, Luo MJ, He JL, XR L, Tan TW (2012) Micro-grinding of micro-groove array on tool rake surface for dry cutting of titanium alloy. Int J Precis Eng Manuf 13(10):1845–1852. https://doi.org/10.1007/s12541-012-0242-9

    Article  Google Scholar 

  23. Niketh S, Samuel GL (2017) Surface texturing for tribology enhancement and its application on drill tool for the sustainable machining of titanium alloy. J Clean Prod 167(20):253–270. https://doi.org/10.1016/j.jclepro.2017.08.178

    Article  Google Scholar 

  24. Yang SC, Liu WW, Zhang YH, Wan Q (2018) Experimental evaluation on micro-texture parameters of carbide ball-nosed end mill in machining of titanium alloy. Int J Adv Manuf Technol 96:1579–1589. https://doi.org/10.1007/s00170-017-0659-5

  25. Yang Y, Su Y, Li L, He N, Zhao W (2015) Performance of cemented carbide tools with microgrooves in Ti-6Al-4V titanium alloy cutting. Int J Adv Manuf Technol 76(9-12):1731–1738. https://doi.org/10.1007/s00170-014-6357-7

    Article  Google Scholar 

  26. Obikawa T, Kamio A, Takaoka H, Osada A (2011) Micro-texture at the coated tool face for high performance cutting. Int J Mach Tool Manuf 51(12):966–972. https://doi.org/10.1016/j.ijmachtools.2011.08.013

    Article  Google Scholar 

  27. Chang W, Sun J, Luo X, Ritchie JM, Mack C (2011) Investigation of microstructured milling tool for deferring tool wear. Wear 271(9):2433–2437. https://doi.org/10.1016/j.wear.2010.12.026

    Article  Google Scholar 

  28. Li Y, Deng J, Chai Y, Fan W (2016) Surface textures on cemented carbide cutting tools by micro EDM assisted with high-frequency vibration. Int J Adv Manuf Technol 82(9-12):2157–2165. https://doi.org/10.1007/s00170-015-7544-x

    Article  Google Scholar 

  29. Rathod P, Aravindan S, Paruchuri VR (2015) Evaluating the effectiveness of the novel surface textured tools in enhancing the machinability of titanium alloy. J Adv Mech Des Syst 9(3):101–123. https://doi.org/10.1299/jamdsm.2015jamdsm0035

    Article  Google Scholar 

  30. Shi Q, Li L, He L, Zhao W, Liu XL (2013) Experimental study in high speed milling of titanium alloy TC21. Int J Adv Manuf Technol 64(1-4):49–54. https://doi.org/10.1007/s00170-012-3997-3

    Article  Google Scholar 

  31. Wu HB, Zhang SJ (2014) 3D FEM simulation of milling process for titanium alloy Ti6Al4V. Int J Adv Manuf Technol 71(5-8):1319–1326. https://doi.org/10.1007/s00170-013-5546-0

    Article  Google Scholar 

  32. Olleak A, Özel T (2017) 3D Finite element modeling based investigations of micro-textured tool designs in machining titanium alloy Ti-6Al-4V. Procedia Manuf 10:536–545. https://doi.org/10.1016/j.promfg.2017.07.042

    Article  Google Scholar 

  33. Obikawa T, Usui E (1996) Computational machining of titanium alloy - finite element modeling and a few results. J Manuf Sci E T ASME 118(2):208–215. https://doi.org/10.1115/1.2831013

    Article  Google Scholar 

  34. Matsumura T, Tamura S (2015) Cutting simulation of titanium alloy drilling with energy analysis and FEM. Procedia Cirp 31:252–257. https://doi.org/10.1016/j.procir.2015.03.045

    Article  Google Scholar 

  35. Zhu Y, Zeng W, Ma X, Tai QG, Li ZH, Li XG (2011) Determination of the friction factor of Ti-6Al-4V titanium alloy in hot forging by means of ring-compression test using FEM. Tribol Int 44(12):2074–2080. https://doi.org/10.1016/j.triboint.2011.07.001

    Article  Google Scholar 

  36. Lou YG, Wu HB (2017) Improving machinability of titanium alloy by electro-pulsing treatment in ultra-precision machining. Int J Adv Manuf Technol 93(5-8):2299–2304. https://doi.org/10.1007/s00170-017-0674-6

    Article  Google Scholar 

  37. Wu HB, Zhang SJ (2015) Effects of cutting conditions on the milling process of titanium alloy Ti6Al4V. Int J Adv Manuf Technol 77(9-12):2235–2240. https://doi.org/10.1007/s00170-014-6645-2

    Article  Google Scholar 

  38. Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proc. 7th Intl Symp. On Ballistics, the Netherlands, pp 541–547

  39. Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and Pressures. Eng Fract Mech 21:31–48. https://doi.org/10.1016/0013-7944(85)90052-9

    Article  Google Scholar 

  40. Zorev NN (1963) Inter-relationship between shear processes occurring along tool face and shear plane in metal cutting. Int Res Prod Eng ASME:42–49

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiongying Duan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, X., Duan, X. Effect of tool microstructure on machining of titanium alloy TC21 based on simulation and experiment. Int J Adv Manuf Technol 111, 2301–2309 (2020). https://doi.org/10.1007/s00170-020-06248-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-06248-z

Keywords

Navigation