Skip to main content

Advertisement

Log in

Characterisation of CoCrMo powder for additive manufacturing

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Different additive manufacturing (AM) technologies can help produce parts from various materials, but in order to achieve consistent and predictable properties and ensure high quality of 3D-printed objects, these materials shall possess specific properties. In this research, we studied initial properties of a cobalt-chrome-molybdenum–based superalloy powder by using sophisticated techniques such as the scanning electron microscopy (SEM) with an energy-dispersive X-ray spectrometer (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and particle-induced X-ray emission (PIXE). The summarised results have shown dispersion of main components (Co, Cr, Mo), an attenuating of Co0.64Cr0.32Mo0.04 with Co0.9Mo0.1 phase, and differences in size, shape, surface roughness, structure and content of S, C, Mn and Si among individual particles. Depending on the particle surface structure, differences in the oxidation of particles have been found. According to Auger survey spectra, the smallest particles had a low concentration of Co and Cr oxides, while the smooth ones had higher contents of metal oxides. These findings could be used to predict behaviour of particles during the additive manufacturing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. van Noort R (2012) The future of dental devices is digital. Dent Mater 28:3–12. https://doi.org/10.1016/j.dental.2011.10.014

    Article  Google Scholar 

  2. Hennen L, Moniz A.B, Torgersen H, Torgersenm J (2018) Additive bio-manufactur3D printing for medical recovery and human enhancement, European Parliamentary Research Service. Scientific Foresight Unit (STOA). PE 614.571. pp. 133. https://doi.org/10.2861/923327

  3. Uriondo A, Esperon-Miguez M, Perinpanayagam S (2015) The present and future of additive manufacturing in the aerospace sector: a review of important aspects, Part G. J Aerospace Eng 229:2132–2147. https://doi.org/10.1177/0954410014568797

    Article  Google Scholar 

  4. Baumers M, Dickens P, Tuck C, Hague R (2016) The cost of additive manufacturing: machine productivity, economies of scale and technology-push. Technol Forecast Soc Chang 102:193–201. https://doi.org/10.1016/j.techfore.2015.02.015

    Article  Google Scholar 

  5. Goharian A, Abdullah MR (2017) Bioinert metals (stainless steel, titanium, cobalt chromium). https://doi.org/10.1016/B978-0-12-804634-0.00007-0

  6. Giacchi VJ, Morando NC, Fornaro O, Palacio HA (2011) Microstructural characterization of as-cast biocompatible Co – Cr – Mo alloys Mater. Charact 62:53–61. https://doi.org/10.1016/j.matchar.2010.10.011

    Article  Google Scholar 

  7. Zhang M, Yang Y, Song C, Bai Y, Xiao Z (2018) Hide details An investigation into the aging behavior of CoCrMo alloys fabricated by selective laser melting. Journal of Alloys and Compounds 750(25):878–886. https://doi.org/10.1088/1757-899X/100/1/012033

    Article  Google Scholar 

  8. Taddei E, Henriques VAR, Silva CRM, Cairo CAA (2004) Production of new titanium alloy for orthopedic implants. Mater Sci Eng C 24(5):683–687. https://doi.org/10.1016/j.msec.2004.08.011

    Article  Google Scholar 

  9. Disegi J (2000) Titanium alloys for fracture fixation implants. Injury 31:D14–D17. https://doi.org/10.1016/S0020-1383(00)80017-0

    Article  Google Scholar 

  10. Hodgson AWE, Kurz S, Virtanen S, Fervel V, Olsson C, Mischler S (2004) Passive and transpassive behavior of CoCrMo in simulated biological solutions. Electrochim Acta 49:2167. https://doi.org/10.1016/j.electacta.2003.12.043

    Article  Google Scholar 

  11. Hiromoto S, Onodera E, Chiba A, Asami K, Hanawa T (2005) Microstructure and corrosion behavior in biological environments of the new forged low-Ni Co–Cr–Mo alloys. Biomaterials. 26:4912–4923. https://doi.org/10.1016/j.biomaterials.2005.01.028

    Article  Google Scholar 

  12. Marcus P (2002) Corrosion mechanisms in theory and practice, 2nd edn. Marcel Dekker, USA. https://doi.org/10.1201/9780203909188

    Book  Google Scholar 

  13. Zhang X, Li Y, Tang N, Onodera E, Chiba A (2014) Corrosion behaviour of CoCrMo alloys in 2 wt% sulphuric acid solution. Electrochim Acta 125:543–555. https://doi.org/10.1016/j.electacta.2014.01.143

    Article  Google Scholar 

  14. Huang P, López HF (1999) Strain induced ε-martensite in a Co–Cr–Mo alloy: grain size effects. Mater Lett 39:244–248. https://doi.org/10.1016/S0167-577X(99)00021-X

    Article  Google Scholar 

  15. Ueki K, Kurihara Y, Mineta S, Alfirano UK, Namba S, Yoneda T, Narushima T (2016) Changes in microstructure of biomedical Co-Cr-Mo alloys during aging at 973 to 1373 K. Mater Trans. 57:2048–2053Opris et al., 2007. https://doi.org/10.2320/matertrans.MI201507

    Article  Google Scholar 

  16. Opris CD, Liu R, Yao MX, Wu XJ (2007) Development of Stellite alloy composites with sintering/HIPing technique for wear-resistant applications. Mater Des 28:581–591. https://doi.org/10.1016/j.matdes.2005.08.004

    Article  Google Scholar 

  17. Human AM, Roebuck B, Exner HE (1998) Electrochemical polarization and corrosion behavior of cobalt and Co(W, C) alloys in 1 N sulphuric acid. Mater Sci Eng A 241:202. https://doi.org/10.1016/S0921-5093(97)00492-9

    Article  Google Scholar 

  18. Potgieter J, Thanjekwayo N, Olubambi P, Maledi N, Potgieter-Vermaak SS (2011) Influence of Ru additions on the corrosion behaviour of WC-Co cemented carbide alloys in sulphuric acid. Int J Refract Met Hard Mater. 29:478. https://doi.org/10.1016/j.ijrmhm.2011.02.007

    Article  Google Scholar 

  19. Nakayama H (1997) Dentistry and metal allergy. Dental-Diamond Co, London, pp 22–27

    Google Scholar 

  20. Lee SH, Takahashi E, Nomura N, Chiba (2005) A effect of heat treatment on microstructure and mechanical properties of Ni- and C-free Co-CrMo alloys for medical applications. Mater Trans 46(8):1790–1793. https://doi.org/10.2320/matertrans.46.1790

    Article  Google Scholar 

  21. Karimi S, Nickchi T, Alfantazi A (2011) Effects of bovine serum albumin on the corrosion behaviour of AISI 316L, Co–28Cr–6Mo, and Ti–6Al–4V alloys in phosphate buffered saline solutions. Corrosion Science 53:3262–3272. https://doi.org/10.1016/j.corsci.2011.06.009

    Article  Google Scholar 

  22. Merritt K, Brown SA (1988) Effect of proteins and pH on fretting corrosion and metalion release. J Biomed Mater Res 22:111–120. https://doi.org/10.1002/jbm.820220204

    Article  Google Scholar 

  23. Lundin M, Hedberg Y, Jiang T, Herting G, Wang X, Thormann E, Blomberg E, Wallinder IO (2012) Adsorption and protein-induced metal release from chromium metal and stainless steel. J Colloid Interface Sci 366(1):155–164. https://doi.org/10.1016/j.jcis.2011.09.068

    Article  Google Scholar 

  24. Talha M, Ma Y, Kumar P, Lin Y, Singh A (2019) Role of protein adsorption in the bio corrosion of metallic implants – a review. Colloids Surf B: Biointerfaces 176:494–506. https://doi.org/10.1016/j.colsurfb.2019.01.038

    Article  Google Scholar 

  25. Slotwinski JA, Garboczi EJ, Stutzman PE, Ferraris CF, Watson SS, Peltz MA (2014) Characterization of metal powders used for additive manufacturing. J Res Natl Inst Stand Technol 119. https://doi.org/10.6028/jres.119.018

  26. Campbell JL, Boyd N, Grassi N, Bonnick P, Maxwell JA (2010) The Guelph PIXE software package IV. Nucl Instr and Meth B 268:3356–3363. https://doi.org/10.1016/j.nimb.2010.07.012

    Article  Google Scholar 

  27. Dunkley JJ (2015) ASM Handbook Powder metallurgy, vol 7. ASM International Materials Park, Ohio

    Google Scholar 

  28. Material data sheet: http://ip-saas-eos-cms.s3.amazonaws.com/public/4b839242298b3d77/721463526ca053889c9784ec989f3c88/EOS_CobaltChrome_MP1_en.pdf

  29. Verma H.R (2007) Atomic and nuclear analytical methods. Punjabi University Patiala India https://doi.org/10.1007/978-3-540-30279-7

  30. Surviliene S, Jasulaitiene A, Cesuniene A, Lisowska-Oleksiak A (2008) The use of XPS for the study of the surface layers of Cr-Co alloy electrodeposited from Cr(III) formate-urea baths. Solid State Ionics 179:222–227. https://doi.org/10.1016/j.ssi.2007.12.052

    Article  Google Scholar 

  31. Mori M, Yamanaka K, Kuramoto K, Ohmura K, Ashino T, Chiba A (2015) Effect of carbon on the microstructure, mechanical properties and metal ion release of Ni-free Co–Cr–Mo alloys containing nitrogen. Mater Sci Eng C 55:145–154. https://doi.org/10.1016/j.msec.2015.05.058

    Article  Google Scholar 

  32. Unger WES (2013) Surface analysis—Auger electron spectroscopy, in reference module in chemistry. In: Molecular Sciences and Chemical Engineering. Elsevier

  33. Delgado J, Ciurana J, Rodríguez CA (2012) Influence of process parameters on part quality and mechanical properties for DMLS and SLM with iron-based materials. Int J Adv Manuf Technol 60:601–610. https://doi.org/10.1007/s00170-011-3643-5

    Article  Google Scholar 

  34. Enrique PD, Marzbanrad E, Mahmoodkhani Y, Keshavarzkermani A, Al Momani H, Toyserkani E, Zhou NY (2020) Design of binder jet additive manufactured co-continuous ceramic-reinforced metal matrix composites. J Mater Sci Technol 49:81–90. https://doi.org/10.1016/j.jmst.2020.01.053

    Article  Google Scholar 

  35. Hwang SS, Lim YS, Kim WS (2013) Role of grain boundary carbides in cracking behavior of Ni base alloys. Nucl Eng Technol 45(1):73–80. https://doi.org/10.5516/NET.07.2012.013

    Article  Google Scholar 

  36. Wang S, Cao L, Zhang Z (2019) Influence of carbide morphology on the deformation and fracture mechanisms of spheroidized 14CrMoR steel. Metals 9(11):1221. https://doi.org/10.3390/met9111221

    Article  Google Scholar 

  37. Vizureanu P, Minciuna MG, Iovan G, Stoleriu S (2017) Synthesis, processing, and characterization of the cobalt alloys with silicon addition. In: Khan M (ed) Cobalt. Intech, pp 23–48. https://doi.org/10.5772/intechopen.70886

Download references

Funding

This work was supported by the Research Council of Lithuania under project No. S-MIP-19-25.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genrik Mordas.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mordas, G., Jasulaitienė, V., Steponavičiūtė, A. et al. Characterisation of CoCrMo powder for additive manufacturing. Int J Adv Manuf Technol 111, 3083–3093 (2020). https://doi.org/10.1007/s00170-020-06236-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-06236-3

Keywords

Navigation