Skip to main content
Log in

In situ three-dimensional laser machining system integrating in situ measurement, reconstruction, parameterization, and texture mapping

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper proposes a novel in situ three-dimensional (3D) laser machining system that combines 3D projection algorithms with in situ measurement and 3D modeling. This system forms a complete “scanning-modeling-projection-machining” integrated processing system for rapid pattern machining on the free-form surfaces. In situ measurement was conducted by self-scanning of the 3D galvanometer scanner. A high-efficiency Delaunay triangulation algorithm was employed for the 3D reconstruction to generate a quality-controlled 3D model. The Least-Squares Conformal Mapping (LSCM) and As-Rigid-As-Possible (ARAP) algorithms were employed for model parameterization. Local parameterization and bitmap vectorization methods were proposed to improve the accuracy and speed of parameterization and texture mapping. In situ machining software was developed, and the algorithms were verified by in situ machining experiments. The LSCM algorithm achieves fast processing speed but suffers from a large distortion if the model is complex. The ARAP algorithm can further ensure the accuracy of the parameterization through iterative calculation. The developed model can better guarantee the model quality for parameterization. The 3D projection algorithm can transfer the two-dimensional (2D) pattern on a 3D surface, and the in situ method eliminates the necessity for assembly and clamping of parts. The local parameterization and bitmap vectorization methods improve both the accuracy and efficiency of 3D projections. Therefore, the proposed in situ machining system has practical application value for the rapid processing of patterns on curved surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fan Z, Dong X, Wang K, Duan W, Wang R, Mei X, Wang W, Cui J, Yuan X, Xu C (2016) Effect of drilling allowance on TBC delamination, spatter and re-melted cracks characteristics in laser drilling of TBC coated superalloys. Int J Mach Tools Manuf 106:1–10. https://doi.org/10.1016/j.ijmachtools.2016.03.008

    Article  Google Scholar 

  2. Liu Y, Zhang R, Li W, Wang J, Yang X, Cheng L, Zhang L (2018) Effect of machining parameter on femtosecond laser drilling processing on SiC/SiC composites. Int J Adv Manuf Technol 96(5-8):1795–1811. https://doi.org/10.1007/s00170-017-1163-7

    Article  Google Scholar 

  3. Cui J, Zhang J, He X, Yang X, Mei X, Wang W, Jiang G, Wang K, Yang L, Xie H (2017) Atomistic simulations on the axial nanowelding configuration and contact behavior between Ag nanowire and single-walled carbon nanotubes. J Nanopart Res 19(3):90. https://doi.org/10.1007/s11051-017-3790-1

    Article  Google Scholar 

  4. Yang L, Cui J, Wang Y, Hou C, Xie H, Mei X, Wang W, Wang K (2015) Nanospot welding of carbon nanotubes using near-field enhancement effect of AFM probe irradiated by optical fiber probe laser. RSC Adv 5(70):56677–56685. https://doi.org/10.1039/C4RA10117K

    Article  Google Scholar 

  5. Zhang Y, You D, Gao X, Katayama S (2019) Online monitoring of welding status based on a DBN model during laser welding. Engineering 5(4):671–678. https://doi.org/10.1016/j.eng.2019.01.016

    Article  Google Scholar 

  6. Zhang Y, Sun D, Gu X, Liu Y (2017) Nd/YAG pulsed laser welding of TC4 titanium alloy to 301L stainless steel via pure copper interlayer. Int J Adv Manuf Technol 90(1-4):953–961. https://doi.org/10.1007/s00170-016-9453-z

    Article  Google Scholar 

  7. Sharma A, Yadava V (2018) Experimental analysis of Nd-YAG laser cutting of sheet materials–a review. Opt Laser Technol 98:264–280. https://doi.org/10.1016/j.optlastec.2017.08.002

    Article  Google Scholar 

  8. Chen X, Li T, Hu Z, Zhou M (2017) Using orthogonal experimental method optimizing surface quality of CO 2 laser cutting process for PMMA microchannels. Int J Adv Manuf Technol 88(9-12):2727–2733. https://doi.org/10.1007/s00170-016-8887-7

    Article  Google Scholar 

  9. Sun D, Han F, Ying W (2019) The experimental investigation of water jet–guided laser cutting of CFRP. Int J Adv Manuf Technol 102(1):719–729. https://doi.org/10.1007/s00170-018-03218-4

    Article  Google Scholar 

  10. Li J, Wang W, Mei X, Sun X, Pan A (2018) The formation of convex microstructures by laser irradiation of dual-layer polymethylmethacrylate (PMMA). Opt Laser Technol 106:461–468. https://doi.org/10.1016/j.optlastec.2018.05.014

    Article  Google Scholar 

  11. Li J, Wang W, Mei X, Pan A, Sun X, Liu B, Cui J (2019) Artificial compound eyes prepared by a combination of air-assisted deformation, modified laser swelling, and controlled crystal growth. ACS Nano 13(1):114–124. https://doi.org/10.1021/acsnano.8b04047

    Article  Google Scholar 

  12. Wang X, Zheng H, Wan Y, Feng W, Lam YC (2018) Picosecond laser surface texturing of a Stavax steel substrate for wettability control. Engineering 4(6):816–821. https://doi.org/10.1016/j.eng.2018.10.006

    Article  Google Scholar 

  13. Sun X, Wang W, Mei X, Pan A, Liu B, Li M (2019) Controllable dot-matrix marking on titanium alloy with anti-reflective micro-structures using defocused femtosecond laser. Opt Laser Technol 115:298–305. https://doi.org/10.1016/j.optlastec.2019.02.022

    Article  Google Scholar 

  14. Chen W, Xu Y, Zhang H, Liu P, Jiao G (2016) Optical lenses design and experimental investigations of a dynamic focusing unit for a CO2 laser scanning system. In: Laser Beam Shaping XVII. International Society for Optics and Photonics, p 995006. https://doi.org/10.1117/12.2236257

  15. Noh J, Suh J, Na S (2010) Fabrication of microgrooves on roll surfaces using a scanner and a telecentric lens. Jpn J Appl Phys 49(5):05EC01. https://doi.org/10.1143/JJAP.49.05EC01

    Article  Google Scholar 

  16. Cao BX, Le Hoang P, Ahn S, J-o K, Noh J (2017) High-precision detection of focal position on a curved surface for laser processing. Precis Eng 50:204–210. https://doi.org/10.1016/j.precisioneng.2017.05.008

    Article  Google Scholar 

  17. Garcia-Giron A, Romano J, Batal A, Michałek A, Penchev P, Dimov S (2020) Experimental investigation of processing disturbances in laser surface patterning. Opt Lasers Eng 126:105900. https://doi.org/10.1016/j.optlaseng.2019.105900

    Article  Google Scholar 

  18. Wang X, Duan J, Jiang M, Zhang F, Ke S, Wu B, Zeng X (2017) Investigation of processing parameters for three-dimensional laser ablation based on Taguchi method. Int J Adv Manuf Technol 93(5-8):2963–2974. https://doi.org/10.1007/s00170-017-0749-4

    Article  Google Scholar 

  19. Diaci J, Bračun D, Gorkič A, Možina J (2011) Rapid and flexible laser marking and engraving of tilted and curved surfaces. Opt Lasers Eng 49(2):195–199. https://doi.org/10.1016/j.optlaseng.2010.09.003

    Article  Google Scholar 

  20. Jezersek M, Kos M, Kosler H, Možina J (2017) Automatic teaching of a robotic remote laser 3D processing system based on an integrated laser-triangulation profilometry. Teh Vjesn 24(1):89–95. https://doi.org/10.17559/TV-20160504230058

  21. Qi L, Zhang Y, Wang S, Tang Z, Yang H, Zhang X (2015) Laser cutting of irregular shape object based on stereo vision laser galvanometric scanning system. Opt Lasers Eng 68:180–187. https://doi.org/10.1016/j.optlaseng.2014.12.007

    Article  Google Scholar 

  22. López AJ, Lamas J, Pozo-Antonio JS, Rivas T, Ramil A (2020) Development of processing strategies for 3D controlled laser ablation: application to the cleaning of stonework surfaces. Opt Lasers Eng 126:105897. https://doi.org/10.1016/j.optlaseng.2019.105897

    Article  Google Scholar 

  23. Guo J, Liu G, Zhang G, Guan Y, Zhang H (2015) Projection algorithm for 3D laser marking. In: 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, pp 2199-2204. https://doi.org/10.1109/ROBIO.2015.7419100

  24. Wang X, Duan J, Jiang M, Ke S, Wu B, Zeng X (2017) Study of laser precision ablating texture patterns on large-scale freeform surface. Int J Adv Manuf Technol 92(9):4571–4581. https://doi.org/10.1007/s00170-017-0413-z

    Article  Google Scholar 

  25. Haker S, Angenent S, Tannenbaum A, Kikinis R, Sapiro G, Halle M (2000) Conformal surface parameterization for texture mapping. IEEE Trans Vis Comput Graph 6(2):181–189. https://doi.org/10.1109/2945.856998

    Article  Google Scholar 

  26. Sheffer A, Praun E, Rose K (2007) Mesh parameterization methods and their applications. Trends Comput Graph Vis 2(2):105–171. https://doi.org/10.1561/0600000011

  27. Zou G, Hu J, Gu X, Hua J (2011) Authalic parameterization of general surfaces using Lie advection. IEEE Trans Vis Comput Graph 17(12):2005–2014. https://doi.org/10.1109/TVCG.2011.171

    Article  Google Scholar 

  28. Zhu X, Hu P, Ma Z, Zhang X, Li W, Bao J, Liu M (2013) A new surface parameterization method based on one-step inverse forming for isogeometric analysis-suited geometry. Int J Adv Manuf Technol 65(9):1215–1227. https://doi.org/10.1007/s00170-012-4251-8

    Article  Google Scholar 

  29. Luo RC, Tseng P-K (2017) Carving 2D image onto 3D curved surface using hybrid additive and subtractive 3D printing process. In: 2017 International Conference on Advanced Robotics and Intelligent Systems (ARIS), IEEE, pp 40-45. https://doi.org/10.1109/ARIS.2017.8297180

  30. Xiao H, Zhou Y, Liu M, Zhang W (2017) Approach to optimize STL model for 3D laser machining. DEStech Transactions on Computer Science and Engineering https://doi.org/10.12783/dtcse/cmsam2017/16369

  31. Li X, Liu B, Mei X, Wang W, Wang X, Li X (2020) Development of an in-situ laser machining system using a three-dimensional galvanometer scanner. Engineering 6(1):68–76. https://doi.org/10.1016/j.eng.2019.07.024

    Article  Google Scholar 

  32. Zhang Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell 22(11):1330–1334. https://doi.org/10.1109/34.888718

    Article  Google Scholar 

  33. Chu H-H, Wang Z-Y (2016) A vision-based system for post-welding quality measurement and defect detection. Int J Adv Manuf Technol 86(9-12):3007–3014. https://doi.org/10.1007/s00170-015-8334-1

    Article  Google Scholar 

  34. Bourke P (1989) Efficient triangulation algorithm suitable for terrain modelling. In: Pan Pacific Computer Conference, Beijing, China

  35. Lévy B, Petitjean S, Ray N, Maillot J (2002) Least squares conformal maps for automatic texture atlas generation. In: ACM transactions on graphics (TOG). vol 3. ACM, pp 362-371. https://doi.org/10.1145/566654.566590

  36. Liu L, Zhang L, Xu Y, Gotsman C, Gortler SJ A (2008) local/global approach to mesh parameterization. In: Computer Graphics Forum. vol 5. Wiley Online Library, pp 1495-1504. https://doi.org/10.1111/j.1467-8659.2008.01290.x

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51735010), the Natural Science Foundation of Shaanxi Province (Grant No. 2019JQ-610), and the National Key Research and Development Program of China (Grant No. 2016YFB1102502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(MP4 91959 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Ren, X., Mei, X. et al. In situ three-dimensional laser machining system integrating in situ measurement, reconstruction, parameterization, and texture mapping. Int J Adv Manuf Technol 111, 673–684 (2020). https://doi.org/10.1007/s00170-020-06016-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-06016-z

Keywords

Navigation