Skip to main content
Log in

A thermal model for real-time temperature forecast of rolling linear guide considering loading working conditions

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Thermal behaviors significantly affect the contact stiffness and position accuracy of the rolling linear guide, which worsen the performance of the precision machinery. In this paper, based on the modified lumped capacitance method (MLCM) and finite element method (FEM), a thermal model of rolling linear guides has been formulated in terms of the geometric parameters, friction, gyroscopic moment, and loading conditions. Experimental results show that the thermal model can well predict the real-time temperature variation under different working conditions. Further analysis shows that, the applied vertical load, carriage velocity, and toque load significantly influence the temperature variation of linear guides, while the influence of the torque load on temperature variation decreases with increasing vertical load levels. Besides, the reasons of the steady-state temperature variation considering the load distribution model are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

i :

Designator of ball row number (1, 2, 3, and 4)

Q fi :

Frictional heat from corresponding raceway

\( {Q}_c^{"} \) :

Convection heat from the front surfaces of the carriage

c :

Specific heat

T :

Real-time temperature of the measuring point

t :

Time

\( {\beta}_c^{\prime } \) :

Compensation factor for the heat loss from the top and side surfaces of the carriage

H Fij :

Frictional heat due to the motion in the direction of rolling

\( {V}_{ij}^{\prime } \) :

Sliding linear velocity of the carriage raceway over the ball in the direction of rolling

\( {F}_{dij\left({x}_{ti}\right)} \), \( {F}_{dij\left({y}_{ti}\right)} \) :

Frictional force in the direction of xti-axis and yti-axis, respectively

ϵij :

Slid-roll ratio at the contact point

O-X, Y, Z :

Global coordinate system

o-x, y, z :

Coordinate system fixed on the carriage

β :

Angle between the U-axis and the \( {x}_i^{\prime }-{y}_i^{\prime } \) plane

U, r, ∅:

Three components of Polar coordinate system

\( {T}_{\left({O}^{\prime }-O\right)\_ ij} \) :

Mapping matrix

w hij :

Distance from the ball’s center, (\( {o}_i^{\prime } \)), to origin, (O), in the direction parallel to the Y-axis

L bcij :

Distance from the ball’s center, (\( {o}_i^{\prime } \)), to the front surface of the carriage in the direction parallel to the Y-axis

F V :

Vertical load acting on the carriage

ζ i :

Vertical displacement of the carriage

α 0 :

Initial contact angle

ori, oci :

Initial raceway groove curvature centers of the rail and carriage, respectively

fr, fc :

Ratio of the rail and carriage raceway groove radius to a ball diameter, respectively

k H :

Parameter of the Hertz contact area

M x :

Pitch torque applied on the carriage

\( {Q}_{ij}^{\prime } \) :

Additional normal force under rolling torque

S H :

Center distance between the no. 1 and no. 3 rail raceway

\( {Q}_{ij}^{"} \) :

Normal force

\( {\overline{p}}_{ij} \) :

Hydrodynamic pressure

η p :

Absolute viscosity of the lubricant

α P :

Pressure-viscosity coefficient

ω Ri :

Rotational speed of the ball center

R :

Equivalent curvature radius of the elliptic contact surface

l c :

Characteristic length of the convective surface

R e :

Reynolds number

u :

Airflow velocity

c a :

Specific heat capacitance of air

q ij :

Heat fluxes set on the elliptical region elements in the carriage raceway grooves

h 2 :

Convection coefficient of the front surfaces of the carriage

j :

Designator of ball number (−n,…0…,n)

\( {Q}_c^{\prime } \) :

Convection heat from the top and side surfaces of the carriage

ρ :

Material density

V :

Volume of the carriage

T 0 :

Environment temperature

α13, α24 :

Impact degree factors for the frictional heat generated from the upper and lower raceways, respectively

\( {\beta}_c^{"} \) :

Compensation factor for the heat loss from the front surfaces of the carriage

H Gij :

Frictional heat due to the motion in the direction perpendicular to rolling

\( {V}_{ij}^{"} \) :

Sliding velocity in the direction perpendicular to rolling

\( {M}_{y_i^{\prime }} \) :

Running torques about the \( {y}_i^{\prime } \)-axis

D b :

Diameter of a ball

\( {o}_i^{\prime } \)-\( {x}_i^{\prime },{y}_i^{\prime },{z}_i^{\prime } \) :

Moving coordinate system

\( {o}_i^{\prime } \)-U, V, W :

Rotating coordinate system

β′:

Angle between the projection of U-axis in the \( {x}_i^{\prime }-{y}_i^{\prime } \) plane and the \( {x}_i^{\prime } \)-axis

xti, yti, zti :

Three components of the contact coordinate system

V C :

Linear velocity of the carriage

w vi :

Distance from the ball’s center, (\( {o}_i^{\prime } \)), to origin, (O), in the direction parallel to the Z-axis

δ 0 :

Oversize of the ball

P ij :

Normal force at contact point under vertical load

ε i :

Outward deformation of the carriage in the direction of X-axis

γ i :

Actual contact angle under load

s 0 :

Distance between ori and oci

\( {o}_{ci}^{\prime } \) :

Actual raceway groove curvature center of the carriage under load

∆ε i :

Initial outward deformation without vertical load

M y :

Rolling torque applied on the carriage

L T :

Moment arm of the rolling torque My

S V :

Center distance between the No.3 and No.4 rail raceway

θ x :

Pitch angle of the carriage

aij, bij :

Semi-major and semi-minor radius of contact ellipse, respectively

h c :

The Til film thickness of the contact area center

η dm _ i :

Acceleration of an element of mass dm

\( {M}_{z_i^{\prime }} \) :

Running torques about the \( {z}_i^{\prime } \)-axis

k a :

Thermal conductivity of the air

\( {N}_{u{l}_c} \) :

Nusselt number

P r :

Prandtl number

υ a :

Kinematic viscosity of air

μ f :

Dynamic viscosity of air

h 1 :

Convection coefficient of the top and side surfaces of the carriage

References

  1. Chen CL, Wang JP, Huang GM, Hsu MH, Chen TT (2017) High-precision rapid prototyping technology for manufacturing linear guides. Int J Adv Manuf Technol 92(9-12):3137–3142. https://doi.org/10.1007/s00170-017-0378-y

    Article  Google Scholar 

  2. He G, Sun G, Zhang H, Huang C, Zhang D (2017) Hierarchical error model to estimate motion error of linear motion bearing table. Int J Adv Manuf Technol 93(5-8):1915–1927. https://doi.org/10.1007/s00170-017-0635-0

    Article  Google Scholar 

  3. Zhang LY, Gao J, Chen X, Chen Y, He YB, Zhang Y, Tang H, Yang ZJ (2018) Implementation and experiment of an active vibration reduction strategy for macro-micro positioning system. Precis Eng 51:219–330. https://doi.org/10.1016/j.precisioneng.2017.09.002

    Article  Google Scholar 

  4. Zhang LY, Gao J, Chen X (2018) A rapid dynamic positioning method for settling time reduction through a macro–micro composite stage with high positioning accuracy. IEEE T Ind Electron 65(6):4849–4860. https://doi.org/10.1109/TIE.2017.2767519

    Article  Google Scholar 

  5. Ramesh R, Mannan MA, Poo AN (2003) Thermal error measurement and modelling in machine tools: Part I. Influence of varying operating conditions. Int J Mach Tools Manuf 43(4):391–404. https://doi.org/10.1016/S0890-6955(02)00263-8

    Article  Google Scholar 

  6. Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tools—a review: Part II: thermal errors. Int J Mach Tools Manuf 40(9):1257–1284. https://doi.org/10.1016/S0890-6955(00)00010-910

    Article  Google Scholar 

  7. Wu CH, Kung YT (2003) Thermal analysis for the feed drive system of a CNC machine center. Int J Mach Tools Manuf 43(15):1521–1528. https://doi.org/10.1016/j.ijmachtools.2003.08.008

    Article  Google Scholar 

  8. Uhlmann E, Hu JM (2012) Thermal modelling of an HSC machining centre to predict thermal error of the feed system. Prod Eng 6(6):603–610. https://doi.org/10.1007/s11740-012-0406-6

    Article  Google Scholar 

  9. Xiang M, Jiang SY (2011) A thermal model of a ball screw feed drive system for a machine tool. Proc Inst Mech Eng, Part C 225(1):186–193. https://doi.org/10.1177/09544062JMES2148

    Article  Google Scholar 

  10. Yang J, Mei XS, Feng B, Zhao L, Ma C, Shi H (2015) Experiments and simulation of thermal behaviors of the dual-drive servo feed system. Chin J Mech Eng (Engl Ed) 28(1):76–87. https://doi.org/10.3901/CJME.2014.1031.162

    Article  Google Scholar 

  11. Jin C, Wu B, Hu YM (2015) Temperature distribution and thermal error prediction of a CNC feed system under varying operating conditions. Int J Adv Manuf Technol 77.9(12):1979–1992. https://doi.org/10.1007/s00170-014-6604-y

    Article  Google Scholar 

  12. Wu CW, Tang CH, Chang CF, Shiao YS (2012) Thermal error compensation method for machine center. Int J Adv Manuf Technol 59(5-8):681–689. https://doi.org/10.1007/s00170-011-3533-x

    Article  Google Scholar 

  13. Mayr J, Jedrzejewski J, Uhlmann E, Donmez MA, Knapp W, Härtig F, Wendt K, Moriwaki T, Shore P, Schmitt R, Brecher C, Würz T, Wegener K (2012) Thermal issues in machine tools. CIRP Ann 61(2):771–791. https://doi.org/10.1016/j.cirp.2012.05.008

    Article  Google Scholar 

  14. Shi H, Ma C, Yang J, Zhao L, Mei XS, Gong GF (2015) Investigation into effect of thermal expansion on thermally induced error of ball screw feed drive system of precision machine tools. Int J Mach Tools Manuf 97:60–71. https://doi.org/10.1016/j.ijmachtools.2015.07.003

    Article  Google Scholar 

  15. Shi H, Zhang DS, Yang J, Ma C, Mei XS, Gong GF (2016) Experiment-based thermal error modeling method for dual ball screw feed system of precision machine tool. Int J Adv Manuf Technol 82(9-12):1693–1705. https://doi.org/10.1007/s00170-015-7491-6

    Article  Google Scholar 

  16. Li Z, Fan K, Yang J, Zhang Y (2014) Time-varying positioning error modeling and compensation for ball screw systems based on simulation and experimental analysis. Int J Adv Manuf Technol 73(5-8):773–782. https://doi.org/10.1007/s00170-014-5865-9

    Article  Google Scholar 

  17. Xu ZZ, Choi C, Liang LJ, Li DY, Lyu SK (2015) Study on a novel thermal error compensation system for high-precision ball screw feed drive (1 st report: Model, calculation and simulation). Int J Precis Eng Manuf 16(9):2005–2011. https://doi.org/10.1007/s12541-015-0261-4

    Article  Google Scholar 

  18. Oyanguren A, Larranaga J, Ulacia I (2018) Thermo-mechanical modelling of ball screw preload force variation in different working conditions. Int J Adv Manuf Technol 97(1-4):723–739. https://doi.org/10.1007/s00170-018-2008-8

    Article  Google Scholar 

  19. Li SH, Zhang YQ, Zhang GX (1997) A study of pre-compensation for thermal errors of NC machine tools. Int J Mach Tools Manuf 37(12):1715–1719. https://doi.org/10.1016/S0890-6955(97)00032-1

    Article  Google Scholar 

  20. Jin C, Wu B, Hu YM (2012) Heat generation modeling of ball bearing based on internal load distribution. Tribol Int 45(1):8–15. https://doi.org/10.1016/j.triboint.2011.08.019

    Article  Google Scholar 

  21. Zou HT, Wang BL (2015) Investigation of the contact stiffness variation of linear rolling guides due to the effects of friction and wear during operation. Tribol Int 92:472–484. https://doi.org/10.1016/j.triboint.2015.07.005

    Article  Google Scholar 

  22. Yun WS, Kim SK, Cho DW (1999) Thermal error analysis for a CNC lathe feed drive system. Int J Mach Tools Manuf 39(7):1087–1101. https://doi.org/10.1016/S0890-6955(98)00073-X

    Article  Google Scholar 

  23. Lee SK, Yoo JH, Yang MS (2003) Effect of thermal deformation on machine tool slide guide motion. Tribol Int 36(1):41–47. https://doi.org/10.1016/S0301-679X(02)00128-7

    Article  Google Scholar 

  24. Oh KJ, Khim G, Park CH, Chung SC (2016) Formulation of friction forces in LM ball guides. Trans Korean Soc Mech Eng 40(2):199–206. https://doi.org/10.3795/KSME-A.2016.40.2.199

    Article  Google Scholar 

  25. Fujita T, Matsubara A, Yamazaki K (2011) Experimental characterization of disturbance force in a linear drive system with high-precision rolling guideways. Int J Mach Tools Manuf 51(2):104–111. https://doi.org/10.1016/j.ijmachtools.2010.11.005

    Article  Google Scholar 

  26. Reuss M, Dadalau A, Verl A (2012) Friction variances of linear machine tool axes. Proc CIRP 4:115–119. https://doi.org/10.1016/j.procir.2012.10.021

    Article  Google Scholar 

  27. Cheng DJ, Yang WS, Park JH, Park TJ, Kim SJ, Kim GH, Park CH (2014) Friction experiment of linear motion roller guide THK SRG25. Int J Precis Eng Manuf 15(3):545–551. https://doi.org/10.1007/s12541-014-0369-y

    Article  Google Scholar 

  28. Jang SH, Khim G, Park CH (2017) Estimation of friction heat in a linear motion bearing using Box–Behnken design. Int J Adv Manuf Technol 89(5-8):2021–2029. https://doi.org/10.1007/s00170-016-9165-4

    Article  Google Scholar 

  29. Harris TA (2001) Rolling bearing analysis, 4th edn. Wiley, New York

    Google Scholar 

  30. Xu ZZ, Liu XJ, Kim HK, Shin JH, Lyu SK (2011) Thermal error forecast and performance evaluation for an air-cooling ball screw system. Int J Mach Tools Manuf 51(7-8):605–611. https://doi.org/10.1016/j.ijmachtools.2011.04.001

    Article  Google Scholar 

  31. Ohta H, Tanaka K (2010) Vertical stiffnesses of preloaded linear guideway type ball bearings incorporating the flexibility of the carriage and rail. J Tribol 132(1):011102–011101. https://doi.org/10.1115/1.4000277

  32. Hou KP, Zhu D, Wen SZ (1987) An inverse solution to the point contact EHL problem under heavy loads. J Tribol 109(3):432–436. https://doi.org/10.1115/1.3261466

    Article  Google Scholar 

  33. Cameron A (1981) Basic lubrication theory. Halsted Press, Chichester

    Google Scholar 

  34. Wu CS, Klaus EE, Duda JL (1989) Development of a method for the prediction of pressure-viscosity coefficients of lubricating oils based on free-volume theory. J Tribol 111(1):121–128. https://doi.org/10.1115/1.3261861

    Article  Google Scholar 

  35. Hamrock BJ, Jacobson BO (1984) Elastohydrodynamic lubrication of line contacts. ASLE Trans 27(4):275–287. https://doi.org/10.1080/05698198408981572

    Article  Google Scholar 

  36. Greenwood JA (1997) Analysis of elliptical Hertzian contacts. Tribol Int 30(3):235–237. https://doi.org/10.1016/S0301-679X(96)00051-5

    Article  Google Scholar 

  37. Jones AB (1959) Ball motion and sliding friction in ball bearings. J Basic Eng 81(1):1–12. https://doi.org/10.1115/1.4008346

    Article  Google Scholar 

  38. Cheng Q, Qi BB, Liu ZF, Zhang CX, Xue DY (2019) An accuracy degradation analysis of ball screw mechanism considering time-varying motion and loading working conditions. Mech Mach Theory 134:1–23. https://doi.org/10.1016/j.mechmachtheory.2018.12.024

    Article  Google Scholar 

  39. Wei CC, Liou WL, Lai RS (2012) Wear analysis of the offset type preloaded ball–screw operating at high speed. Wear 292:111–123. https://doi.org/10.1016/j.wear.2012.05.024

    Article  Google Scholar 

  40. Sonntag RE, Borgnakke C, Wylen GJV (1998) Fundamentals of thermodynamics. Wiley, New York

    Google Scholar 

  41. Ghiaasiaan SM (2011) Convective heat and mass transfer. Cambridge University Press, New York

    Book  Google Scholar 

Download references

Funding

This project is financially supported by the National Science and Technology Major Projects of China (Grant No. 2019ZX04010001) and National Natural Science Foundation of China (Grant No. 51905274).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Guang Zhou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 5 Calculated results of heat flux q_ij considering different torque loads under light load (0.796 kN, 4%C).
Table 6 Calculated results of heat flux qij considering different torque loads under heavy load (5.970 kN, 30%C)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XY., Feng, HT., Zhou, CG. et al. A thermal model for real-time temperature forecast of rolling linear guide considering loading working conditions. Int J Adv Manuf Technol 109, 2249–2271 (2020). https://doi.org/10.1007/s00170-020-05723-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05723-x

Keywords

Navigation