Skip to main content

Advertisement

Log in

High deposition efficiency and delamination issues during high-pressure cold spraying metallization of PEEK using spherical copper powders

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Achieving high deposition efficiency (DE) is a current challenge of cold spraying metallization of polymers for developing surface function such as a conduction performance. Low-pressure cold spraying (LPCS) has been explored for that purpose but meets DE limitation less than 50% generally. This paper focuses on the possibility to overcome this issue, but using high-pressure cold spraying (HPCS). The anchoring of the copper powders onto the PEEK substrate is not difficult, but the deposition can fail during the coating build-up. A high pressure of 2.5 MPa without a gas preheating does not produce a coating build-up. Higher chamber pressures are required, but this implies to increase the gas temperature up to 400 °C to reach high deposition efficiency up to 70%. However, the absorption of the impact energy by the PEEK substrate during the collision of the powders generates an intermediate weakly bonded layer which is characterized by a decohesion between weakly deformed powders. This structure impairs the integrity of the coating during the additive deposition. Spalling damage occurs. Therefore, the deposition becomes very sensitive to delamination issues to overcome.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chen X, Su Y, Reay D, Riffat S (2016) Recent research developments in polymer heat exchangers – a review. Renew Sust Energ Rev 60:1367–1386. https://doi.org/10.1016/j.rser.2016.03.024

    Article  Google Scholar 

  2. Zhang G, Yu H, Zhang C, Liao H, Coddet C (2008) Temperature dependence of the tribological mechanisms of amorphous PEEK (polyetheretherketone) under dry sliding conditions. Acta Mater 56:2182–2190. https://doi.org/10.1016/j.actamat.2008.01.018

    Article  Google Scholar 

  3. Kurokawa M, Uchiyama Y, Nagai S (2000) Performance of plastic gear made of carbon fiber reinforced poly-ether-ether-ketone: part 2. Tribol Int 33:715–721. https://doi.org/10.1016/S0301-679X(00)00111-0

    Article  Google Scholar 

  4. Raoelison RN, Verdy C, Liao H (2017) Cold gas dynamic spray additive manufacturing today: deposit possibilities, technological solutions and viable applications. Mater Des 133:266–287. https://doi.org/10.1016/j.matdes.2017.07.067

    Article  Google Scholar 

  5. Raoelison RN (2018) Coeval cold spray additive manufacturing variances and innovative contributions. Cold-Spray Coat. Springer, Cham, pp 57–94. https://doi.org/10.1007/978-3-319-67183-3_3

    Book  Google Scholar 

  6. Lee JH, Jang HL, Lee KM, Baek H-R, Jin K, Hong KS, Noh JH, Lee HK (2013) In vitro and in vivo evaluation of the bioactivity of hydroxyapatite-coated polyetheretherketone biocomposites created by cold spray technology. Acta Biomater 9:6177–6187. https://doi.org/10.1016/j.actbio.2012.11.030

    Article  Google Scholar 

  7. Antibacterial property of cold-sprayed HA-Ag/PEEK coating | SpringerLink n.d. https://link.springer.com/article/10.1007/s11666-008-9283-0. Accessed 2 Oct 2019

  8. Gritsenko KP (1993) Metal-polymer optical storage media produced by PECVD. Thin Solid Films 227:1–2. https://doi.org/10.1016/0040-6090(93)90177-Q

    Article  Google Scholar 

  9. Duguet T, Senocq F, Laffont L, Vahlas C (2013) Metallization of polymer composites by metalorganic chemical vapor deposition of Cu: surface functionalization driven films characteristics. Surf Coat Technol 230:254–259. https://doi.org/10.1016/j.surfcoat.2013.06.065

    Article  Google Scholar 

  10. Siegel J, Kotal V(2007) Preparation of thin metal layers on polymers. 10.14311/904

  11. de Leeuw DM, Kraakman PA, Bongaerts PFG, Mutsaers CMJ, Klaassen DBM (1994) Electroplating of conductive polymers for the metallization of insulators. Synth Met 66:263–273. https://doi.org/10.1016/0379-6779(94)90076-0

    Article  Google Scholar 

  12. Gonzalez R, Ashrafizadeh H, Lopera A, Mertiny P, McDonald A (2016) A review of thermal spray metallization of polymer-based structures. J Therm Spray Technol 25:897–919. https://doi.org/10.1007/s11666-016-0415-7

    Article  Google Scholar 

  13. Ganesan A, Affi J, Yamada M, Fukumoto M (2012) Bonding behavior studies of cold sprayed copper coating on the PVC polymer substrate. Surf Coat Technol 207:262–269. https://doi.org/10.1016/j.surfcoat.2012.06.086

    Article  Google Scholar 

  14. Ganesan A, Yamada M, Fukumoto M (2013) Cold spray coating deposition mechanism on the thermoplastic and thermosetting polymer substrates. J Therm Spray Technol 22:1275–1282. https://doi.org/10.1007/s11666-013-9984-x

    Article  Google Scholar 

  15. Robitaille F, Yandouzi M, Hind S, Jodoin B (2009) Metallic coating of aerospace carbon/epoxy composites by the pulsed gas dynamic spraying process. Surf Coat Technol 203:2954–2960. https://doi.org/10.1016/j.surfcoat.2009.03.011

    Article  Google Scholar 

  16. Gillet V, Aubignat E, Costil S, Courant B, Langlade C, Casari P, Knapp W, Planche MP (2019) Development of low pressure cold sprayed copper coatings on carbon fiber reinforced polymer (CFRP). Surf Coat Technol 364:306–316. https://doi.org/10.1016/j.surfcoat.2019.01.011

    Article  Google Scholar 

  17. Che H, Vo P, Yue S (n.d.) Metallization of carbon fibre reinforced polymers by cold spray. Surf Coat Technol 313:236–247. https://doi.org/10.1016/j.surfcoat.2017.01.083

  18. Archambault G, Jodoin B, Gaydos S, Yandouzi M (2016) Metallization of carbon fiber reinforced polymer composite by cold spray and lay-up molding processes. Surf Coat Technol 300:78–86. https://doi.org/10.1016/j.surfcoat.2016.05.008

    Article  Google Scholar 

  19. Njuhovic E, Witt A, Kempf M, Glöde S, Altstädt V (n.d.) Metallization of fiber-reinforced epoxy composites - effect of surface structure on the peel strength. 7

  20. King PC, Poole AJ, Horne S, de Nys R, Gulizia S, Jahedi MZ (2013) Embedment of copper particles into polymers by cold spray. Surf Coat Technol 216:60–67. https://doi.org/10.1016/j.surfcoat.2012.11.023

    Article  Google Scholar 

  21. Małachowska A, Winnicki M, Konat Ł, Piwowarczyk T, Pawłowski L, Ambroziak A, Stachowicz M (n.d.) Possibility of spraying of copper coatings on polyamide 6 with low pressure cold spray method. Surf Coat Technol 318:82–89. https://doi.org/10.1016/j.surfcoat.2017.02.001

  22. Chen C, Xie X, Xie Y, Yan X, Huang C, Deng S, Ren Z, Liao H (2018) Metallization of polyether ether ketone (PEEK) by copper coating via cold spray. Surf Coat Technol 342:209–219. https://doi.org/10.1016/j.surfcoat.2018.02.087

    Article  Google Scholar 

  23. Lupoi R, O’Neill W (2010) Deposition of metallic coatings on polymer surfaces using cold spray. Surf Coat Technol 205:2167–2173. https://doi.org/10.1016/j.surfcoat.2010.08.128

    Article  Google Scholar 

  24. Vucko MJ, King PC, Poole AJ, Carl C, Jahedi MZ, de Nys R (2012) Cold spray metal embedment: an innovative antifouling technology. Biofouling 28:239–248. https://doi.org/10.1080/08927014.2012.670849

    Article  Google Scholar 

  25. Sanpo N, Ang SM, Cheang P, Khor KA (2009) Antibacterial property of cold sprayed chitosan-Cu/Al coating. J Therm Spray Technol 18:600–608. https://doi.org/10.1007/s11666-009-9391-5

    Article  Google Scholar 

  26. Sanpo N, Tan ML, Cheang P, Khor KA (2008) Antibacterial property of cold-sprayed HA-Ag/PEEK coating. J Therm Spray Technol 18:10–15. https://doi.org/10.1007/s11666-008-9283-0

    Article  Google Scholar 

  27. Ogawa K, Ito K, Ichimura K, Ichikawa Y, Ohno S, Onda N (2008) Characterization of low-pressure cold-sprayed aluminum coatings. J Therm Spray Technol 17:728–735. https://doi.org/10.1007/s11666-008-9254-5

    Article  Google Scholar 

  28. Che H, Chu X, Vo P, Yue S (2018) Metallization of various polymers by cold spray. J Therm Spray Technol 27:169–178. https://doi.org/10.1007/s11666-017-0663-1

    Article  Google Scholar 

  29. Che H, Chu X, Vo P, Yue S (n.d.) Cold spray of mixed metal powders on carbon fibre reinforced polymers. Surf Coat Technol 329:232–243. https://doi.org/10.1016/j.surfcoat.2017.09.052

  30. Raoelison RN, Aubignat E, Planche M-P, Costil S, Langlade C, Liao H (2016) Low pressure cold spraying under 6 bar pressure deposition: exploration of high deposition efficiency solutions using a mathematical modelling. Surf Coat Technol 302:47–55. https://doi.org/10.1016/j.surfcoat.2016.05.068

    Article  Google Scholar 

  31. Tabbara H, Gu S, McCartney DG, Price TS, Shipway PH (2011) Study on process optimization of cold gas spraying. J Therm Spray Technol 20:608–620. https://doi.org/10.1007/s11666-010-9564-2

    Article  Google Scholar 

  32. Faizan-Ur-Rab M, Zahiri SH, Masood SH, Phan TD, Jahedi M, Nagarajah R (2016) Application of a holistic 3D model to estimate state of cold spray titanium particles. Mater Des 89:1227–1241. https://doi.org/10.1016/j.matdes.2015.10.075

    Article  Google Scholar 

  33. Raoelison RN, Aubignat E, Planche M-P, Costil S, Langlade C, Liao H (2016) Low pressure cold spraying under 6bar pressure deposition: exploration of high deposition efficiency solutions using a mathematical modelling. Surf Coat Technol 302:47–55. https://doi.org/10.1016/j.surfcoat.2016.05.068

    Article  Google Scholar 

  34. Liberati AC, Che H, Vo P, Yue S (2019) Observation of an indirect deposition effect while cold spraying Sn-Al mixed powders onto carbon fiber reinforced polymers. J Therm Spray Technol 29:134–146. https://doi.org/10.1007/s11666-019-00967-w

    Article  Google Scholar 

  35. Raoelison RN, Xie Y, Sapanathan T, Planche MP, Kromer R, Costil S, Langlade C (2018) Cold gas dynamic spray technology: a comprehensive review of processing conditions for various technological developments till to date. Addit Manuf 19:134–159. https://doi.org/10.1016/j.addma.2017.07.001

    Article  Google Scholar 

  36. Winnicki M, Małachowska A, Dudzik G, Rutkowska-Gorczyca M, Marciniak M, Abramski K, Ambroziak A, Pawłowski L (2015) Numerical and experimental analysis of copper particles velocity in low-pressure cold spraying process. Surf Coat Technol 268:230–240. https://doi.org/10.1016/j.surfcoat.2014.11.059

    Article  Google Scholar 

  37. Winnicki M, Małachowska A, Baszczuk A, Rutkowska-Gorczyca M, Kukla D, Lachowicz M, Ambroziak A (n.d.) Corrosion protection and electrical conductivity of copper coatings deposited by low-pressure cold spraying. Surf Coat Technol 318:90–98. https://doi.org/10.1016/j.surfcoat.2016.12.101

  38. Lagerbom J, Koivuluoto H, Larjo J, Kylmälahti M, Vuoristo P (2007) Comparison of coatings prepared by two different cold spray processes, Beijing, China

  39. Rokni MR, Feng P, Widener CA, Nutt SR (2019) Depositing Al-based metallic coatings onto polymer substrates by cold spray. J Therm Spray Technol 28:1699–1708. https://doi.org/10.1007/s11666-019-00911-y

    Article  Google Scholar 

  40. Gülhan A, Braun S (2011) An experimental study on the efficiency of transpiration cooling in laminar and turbulent hypersonic flows. Exp Fluids 50:509–525. https://doi.org/10.1007/s00348-010-0945-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rija Nirina Raoelison.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koithara, L.L., Raoelison, R.N., Costil, S. et al. High deposition efficiency and delamination issues during high-pressure cold spraying metallization of PEEK using spherical copper powders. Int J Adv Manuf Technol 107, 4427–4436 (2020). https://doi.org/10.1007/s00170-020-05349-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05349-z

Keywords

Navigation