Skip to main content
Log in

A review on the porous medium approaches to model the flow of interdendritic liquid during the solidification of alloys in casting processes: theory and experiments

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The porous medium approach is one of the most popular methods to model the flow of liquid alloys through the solid interdendritic channels in the mushy zone, which is crucial to predict casting defects. In particular, characterizing the permeability of the mushy zone is of vital importance to reliably predict shrinkage porosity and blowholes. Nevertheless, this is not as simple task as permeability continuously evolves through the different stages of the solidification process. For these reasons, a great effort has been made in the past to obtain relationships relating the microstructural parameters to the permeability of the mushy zone. Also, some researchers have taken advantage of the advances in pore network modeling to predict permeability, obtaining promising results. Although a number of numerical experiments have been performed, their reliability has traditionally been hampered by the technical difficulties in reproducing real process conditions. The recent development of imaging techniques with improved spatial and temporal resolution, such as synchrotron 4D (3D + time) X-ray microtomography, has marked a turning point in the experimental validation of the models and is an efficient means to explore the solidification mechanisms. This context of prolific theoretical modeling and major technical achievements provides an excellent opportunity for the materials processing research community to apply the recent progress in fluid flow modeling through complex porous media to the field of casting processes. The aim of this article is to review the state of the art in modeling and experimental evaluation of the permeability of semi-solid zone of casting alloys during solidification so as to smooth the way to future studies. The main stumbling blocks in the field are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Flemings MC (1974) Solidification processing. McGraw-Hill, New York, USA

    Google Scholar 

  2. Poirier DR (1987) Permeability for flow of interdendritic liquid in columnar-dendritic alloys. Metall Trans B 18(1):245–255

    Google Scholar 

  3. Chen HQ (1990) Numerical modeling of castings during solidification process. ChongQing University Press, China

    Google Scholar 

  4. Stefanescu DM (2009) Science and engineering of casting solidification, second edn. The Ohio State University, Columbus

  5. Ganesan S, Chan CL, Poirier DR (1992) Permeability for flow parallel to primary dendrite arms. Mater Sci Eng A151:92–105

    Google Scholar 

  6. Chang S, Stefanescu DM (1996) A model for macrosegregation and its application to Al-Cu castings. Metall Mater Trans A 27A:2708–2721

    Google Scholar 

  7. Böttger B, Haberstroh C, Giesselman N (2016) Cross-permeability of the semisolid region in directional solidification: a combined phase-field and lattice-Boltzmann simulation approach. JOM 68(1):27–36

    Google Scholar 

  8. Sinha SK, Sundararahan T (1992) A variable property analysis of alloy solidification using the anisotropic porous medium approach. Int J Heat Mass Transf 35(11):2865–2877

    MATH  Google Scholar 

  9. Gartling DK (1980) Finite element analysis of convective heat transfer problems with change of phase. In: Morgan K, Taylor C, Brebbia CA (eds) Computer Methods in Fluids. Pentech., London, United Kingdom, pp 257–284

    Google Scholar 

  10. Morgan K (1981) A numerical analysis of freezing and melting with convection. Comput Methods Appl Mech Eng 28(3):275–284

    Google Scholar 

  11. Mehrabian R, Keane M, Flemings MC (1970) Interdendritic fluid flow and macrosegregation; Influence of Gravity. Metall Trans B 1(5):1209–1220

    Google Scholar 

  12. van Boggelen JWK, Eskin DG, Katgerman L (2003, TMS (The Minerals, Metals & Materials Society)) Permeability of the mushy zone in aluminum alloys: evaluation of different approaches. Light Met:759–765

  13. van Boggelen JWK, Eskinm DG, Katgerman L (2003b) First stages of grain coarsening in semi-solid Al-Cu alloys. Scr Mater 49:717–722

    Google Scholar 

  14. Erdmann RG, Poirier DR, Hendrick AG (2010) Permeability in the mushy zone. Mater Sci Forum 649:399–408

    Google Scholar 

  15. Kumar A, Zaloznik M, Combeau H, Goyeau B, Gobin D (2013) A numerical simulation of columnar solidification: influence of inertia on channel segregation. Model Simul Mater Sci Eng 21:045016

    Google Scholar 

  16. Lee PD, Chirazi A, See D (2001) Modeling microporosity in aluminum-silicon alloys: a review. J Light Met 1:15–30

    Google Scholar 

  17. Liu Y, Jie W, Gao Z, Zheng Y (2015) Investigation on the formation of microporosity in alluminium alloys. J Alloys Compd 625:221–229

    Google Scholar 

  18. Poirier DR, Yeum K, Maples AL (1987) A thermodynamic prediction for microporosity formation in aluminium-rich Al-Cu alloys. Metall Trans A 18(11):1979–1987

    Google Scholar 

  19. Gao, Z., Jie, W., Liu, Y., Luo, H: Solidification modelling for coupling prediction of porosity and segregation. Acta Mater 127, 277–286 (2017)

  20. Darcy HJ (1856) Les Fontaines Publiques de la Vue de Dijon. Libraire de Corps Imp_eriaux des Ponts et Chaus_ees et des Mines, Paris, pp 590–594

    Google Scholar 

  21. Schneebeli G (1955) Expériences sur la limite de validité de la loi de Darcy et l’apparition de la turbulence dans un écoulement de filtration. La Houille Blanche 2:141–149

    Google Scholar 

  22. Streat N, Weinberg F (1976) Interdendritic fluid flow in a lead-tin alloy. Metall Trans B 7(3):417–423

    Google Scholar 

  23. Teng H, Zhao TS (2000) An extension of Darcy's law to non-stokes flow in porous media. Chem Eng Sci 55:2727–2735

    Google Scholar 

  24. Muljadi BP, Blunt MJ, Raeini AQ, Bijeljic B (2016) The impact of porous media heterogeneity on non-Darcy flow behaviour from pore-scale simulation. Adv Water Resour 95:329–340

    Google Scholar 

  25. Ransley CE, Neufeld H (1947) The solubility of hydrogen in liquid and solid aluminum. J Inst Met 74:599–620

    Google Scholar 

  26. Zhao H, White DR, DebRoy T (1999) Current issues and problems in laser welding of automotive aluminium alloys. Int Mater Rev 44(6):238–266

    Google Scholar 

  27. Talbot DEJ, Anyalebechi PN (1988) Solubility of hydrogen in liquid aluminium. Mater Sci Technol 4(1):1–4

    Google Scholar 

  28. Lin RY, Hoch ML (1989) The solubility of hydrogen in molten aluminum alloys. Metall Trans A 20(9):1785–1791

    Google Scholar 

  29. Ulanovskiy IB (2015) Hydrogen diffusion and porosity formation in aluminium. Ɇ. Izdatelskiy Dom ‘MISIS’, Moscow

    Google Scholar 

  30. Asta M, Beckermann C, Karma A, Kurz W, Napolitano R, Plapp M, Purdy G, Rappaz M, Trivedi R (2009) Solidification microstructures and solid-state parallels: recent developments, future directions. Acta Mater 57:941–971

    Google Scholar 

  31. Stefanescu DM (2015) Science and engineering of casting solidification, Third edn. Springer International Publishing, Châlons-en-Champagne

  32. Beckermann C, Viskanta R (1993) Mathematical modeling of transport phenomena during alloy solidification. Appl Mech Rev 46(1):1–27

    MathSciNet  Google Scholar 

  33. Rappaz M (2016) Modeling and characterization of grain structures and defects in solidification. Curr Opin Solid State Mater Sci 20:37–45

    Google Scholar 

  34. Hendrick AG, Erdmann RG, Goodman MR (2012) Practical considerations for selection of representative elementary volumes for fluid permeability in fibrous porous media. Transp Porous Media 95(2):389–405

    Google Scholar 

  35. Ganesan S, Poirier DR (1990) Conservation of mass and momentum for the flow of Interdendritic liquid during solidification. Metall Trans B 21B:173–181

    Google Scholar 

  36. Bennon WD, Incropera FP (1987a) A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems- I. Model formulation. Int J Heat Mass Transf 30(10):2161–2170

    MATH  Google Scholar 

  37. Bennon WD, Incropera FP (1987b) A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems- II. Application to solidification in a rectangular cavity. Int J Heat Mass Transf 30(10):2161–2170

    MATH  Google Scholar 

  38. Heinrich JC, Poirier DR (2004) The effect of volume change during directional solidification of binary alloys. Model Simul Mater Sci Eng 12(5):881–899

    Google Scholar 

  39. Currey DA, Pickles CA (1988) Electromagnetic stirring of aluminium-silicon alloys. J Mater Sci 23(10):3756–3763

    Google Scholar 

  40. Murphy AG, Mirihanage WU, Browne DJ, Mathiesen RH (2015) Equiaxed dendritic solidification and grain refiner potency characterised through in situ X-radiography. Acta Mater 95:83–89

    Google Scholar 

  41. Hunt JD (1984) Steady state columnar and equiaxed growth of dendrites and eutectic. Mater Sci Eng 65(1):75–83

    Google Scholar 

  42. Liotti E, Lui A, Kumar S, Guo Z, Bi C, Connolley T, Grant PS (2016) The spatial and temporal distribution of dendrite fragmentation in solidifying Al-Cu alloys under different conditions. Acta Mater 121:384–395

    Google Scholar 

  43. Kubo K, Pehlke RD (1985) Mathematical modeling of porosity formation in solidification. Metall Trans B 16(2):359–366

    Google Scholar 

  44. Scheil E (1942) Bemerkungen zur schichtkristallbildung. Zeitschrift Metallkunde 34; 70–72

  45. Poirier DR, Ganesan S (1992) Permeabilities for flow of interdendritic liquid in equiaxial structures. Mater Sci Eng A 157(1):113–123

    Google Scholar 

  46. Brown SGR, Spittle JA, Jarvis DJ, Walden-Bevan R (2002) Numerical determination of liquid flow permeabilities for equiaxed dendritic structures. Acta Mater 50:1559–1569

    Google Scholar 

  47. Bernard D, Nielsen Ø, Salvo L, Cloetens P (2005) Permeability assessment by 3D interdendritic flow simulations on microtomography mappings of Al–Cu alloys. Mater Sci Eng A 392:112–120

    Google Scholar 

  48. Ilegbusi OJ, Mat MD (1998) Modeling flowability of mushy zone with a hybrid model utilizing coherency solid fraction. Mater Sci Eng A 24(7A):135–141

    Google Scholar 

  49. Vreemam CP, Incropera FP (2000) The effect of free-floating dendrites and convection on macrosegregation in direct chill cast aluminum alloys part II: predictions for Al-Cu and Al-Mg alloys. Int J Heat Mass Transf 43:687–704

    MATH  Google Scholar 

  50. Krane MJM (2004) Macrosegregation development during solidification of a multicomponent alloy with free-floating solid particles. Appl Math Model 28:95–107

    Google Scholar 

  51. Browne DJ, Hunt JD (2004) A fixed grind front-tracking model of the growth of a columnar front and an equiaxed grain during solidification of an alloy. Numer Heat Transf B 45B:395–419

    Google Scholar 

  52. Banaszek J, Macfadden S, Browne DJ, Sturz L, Zimmermann G (2007) Natural convection and columnar-to-equiaxed transition prediction in a front-tracking model of alloy solidification. Metall Mater Trans A 38A:1476–1484

    Google Scholar 

  53. Seredynski M, Banaszek J (2010) Front tracking based macroscopic calculations of columnar and equiaxed solidification of a binary alloy. J Heat Transf 132:102301–102310

    Google Scholar 

  54. Banaszek J, Seredynski M (2012) The accuracy of a solid packing fraction model in recognizing zones of different dendritic structures. Int J Heat Mass Transf 55:4334–4339

    Google Scholar 

  55. Torabi Rad M, Beckermann C (2019) A truncated-Scheil type model for columnar solidification of binary alloys in the presence of melt convection. Materialia 7:100364

    Google Scholar 

  56. Bhat MS, Poirier DR, Heinrich JC (1995) Permeability for cross flow through columnar-dendritic alloys. Metall Mater Trans B Process Metall Mater Process Sci 26B:1049–1056

    Google Scholar 

  57. Goyeau B, Benihaddadene T, Gobin D, Quintard M (1997) Numerical calculation of the permeability in a dendritic mushy zone. Transp Porous Media 28:19–50

    Google Scholar 

  58. Furmanski P, Banaszek J (2006) Modelling of the mushy zone permeability for solidification of binary alloys. Mater Sci Forum 508:411–418

    Google Scholar 

  59. Murakami K, Shiraishi A, Okamoto T (1984) Fluid flow in interdendritic space in cubic alloys. Acta Metall 32(9):1423–1428

    Google Scholar 

  60. Wisniewski P, Brody HD (1993) Microstructural characterization of interdendritic liquid channels. Mater Sci Eng A 165(1):45–49

    Google Scholar 

  61. Santos RG, Melo MLNM (2005) Permeability of interdendritic channels. Mater Sci Eng A 391:151–158

    Google Scholar 

  62. Takaki T, Sakane S, Ohno M, Shibuta Y, Aoki T (2019) Permeability prediction for flow normal to columnar solidification structures by large-scale simulations of phase-field and lattice Boltzmann methods. Acta Mater 164(1):237–249

    Google Scholar 

  63. Nielsen Ø, Arnberg L, Thevik H (1999) Experimental determination of mushy zone permeability in aluminum-copper alloys with equiaxed microstructures. Metall Mater Trans A 30(9):2455–2462

    Google Scholar 

  64. Duncan AJ, Han Q, Viswanathan S (1999) Measurement of liquid permeability in the mushy zones of aluminium-copper alloys. Metall Mater Trans B Process Metall Mater Process Sci 30(4):745–750

    Google Scholar 

  65. Han Q, Duncan AJ, Viswanathan S (2003) Permeability measurements of the flow of interdendritic liquid in equiaxed aluminium-silicon alloys. Metall Mater Trans B Process Metall Mater Process Sci 34(1):25–28

    Google Scholar 

  66. Piwonka TS, Flemings MC (1966) Pore formation in solidification. Trans Metall Soc AIME 236:1157–1165

    Google Scholar 

  67. Wang CY, Ahuja S, Beckermann C, de Groh III, H.C. (1995) Multiscale interfacial drag in equiaxed solidification. Metall Mater Trans B Process Metall Mater Process Sci 26(1):111–119

    Google Scholar 

  68. Bäckerud L, Chai G, Tamminem J (1990) Solidification characteristics of aluminum alloys: volume 2, Foundry Alloys. AFS/Skanaluminimu, Des Plaines, Illinois

    Google Scholar 

  69. Arnberg L, Chai G, Backerud L (1993) Determination of dendritic coherency in solidifying melts by rheological measurements. Mater Sci Eng A 173:101–103

    Google Scholar 

  70. Veldman NLM, Dahle AK, StJohn DH, Arnberg L (2011) Dendrite coherency of Al–Cu–Si alloys. Metall Mater Trans A 32(1):147–155

    Google Scholar 

  71. Ishii M, Zuber N (1979) Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AlChe J 25(5):843–855

    Google Scholar 

  72. Wang CY, Beckermann C (1993) Single- vs. dual-scale volume averaging for heterogeneous multiphase systems. Int J Multiph Flow 19(2):397–407

    MATH  Google Scholar 

  73. Ludwig A, Wu M (2005) Modelling the columnar-to-equiaxed transition with a 3- phase Eulerian approach. Mater Sci Eng A 413-414:109–114

    Google Scholar 

  74. Ahmadein M, Wu M, Ludwig A (2015) Analysis of macrosegregation formation and columnar-to-equiaxed transition during solidification of Al-4wt.%Cu ingot using a 5-phase model. J Cryst Growth 417:65–74

    Google Scholar 

  75. Nielsen Ø, Arnberg L (2000) Experimental difficulties associated with permeability measurements in aluminium alloys. Metall Mater Trans A 31(12):3149–3153

    Google Scholar 

  76. Poirier DR, Ocansey P (1993) Permeability for flow of liquid through equiaxial mushy zones. Mater Sci Eng A 171(1–2):231–240

    Google Scholar 

  77. Poirier DR, Ganesan S, Andrews M, Ocansey P (1991) Isothermal coarsening of dendritic equiaxial grains in Al-15.6wt.%Cu alloy. Mater Sci Eng A 148(2):289–297

    Google Scholar 

  78. Underwood EE (1985) Quantitative metallography. In: ASM metals handbook, microstructures, vol 9: metallography and microstructures, 9th edn. ASM International, Novelty, pp 123–134

  79. Löser W, Thiem S, Jurisch M (1993) Solidification modelling of microstructures in near-net-shape casting of steels. Mater Sci Eng A 173(1–2):323–326

    Google Scholar 

  80. Pompe O, Rettenmayr M (1998) Microstructural changes during quenching. J Cryst Growth 192(1–2):300–306

    Google Scholar 

  81. Ludwig O, Dimichiel M, Salvo L, Suéry M, Falus P (2005) In-situ three-dimensional microstructural investigation of solidification of an Al-Cu alloy by ultrafast X-ray microtomography. Metall Mater Trans A 36(6):1515–1523

    Google Scholar 

  82. Lifshitz IM, Slyozov VV (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19(l-2):35–50

    Google Scholar 

  83. Wagner C (1961) Theorie der Alterung von Niederschliigen durch UmlosenZeitschrift für Elektrochemie, 65, 581–91

  84. Alkemper J, Voorhees PW (2001a) Quantitative serial sectioning analysis. J Microsc 201:388–394

    MathSciNet  Google Scholar 

  85. Alkemper J, Voorhees PW (2001b) Three-dimensional characterization of dendritic microstructures. Acta Mater 49:897–902

    Google Scholar 

  86. Nguyen-Thi H, Salvo L, Mathiesen RH, Arnberg L, Billia B, Suery M, Reinhart G (2012) On the interest of synchrotron X-ray imaging for the study of solidification in metallic alloys. C R Phys 13:237–245

    Google Scholar 

  87. Buffière J-Y, Cloetens P, Ludwig W, Maire E, Salvo L (2008) In Situ X-ray tomography studies of microstructural evolution combined with 3D modeling. Mater Res Soc Bull 33:311–319

    Google Scholar 

  88. Fuloria D, Lee PD, Bernard D (2008) Microtomographic characterization of columnar Al–Cu dendrites for fluid flow and flow stress determination. Mater Sci Eng A 494:3–9

    Google Scholar 

  89. Zabler S, Rueda A, Rack A, Riesemeier H, Zaslansky P, Manke I, Garcia-Moreno F, Banhart J (2007) Coarsening of grain-refined semi-solid Al–Ge32 alloy: X-ray microtomography and in situ radiography. Acta Mater 55:5045–5055

    Google Scholar 

  90. Koch A, Raven C, Spanne P, Snigirev A (1998) X-ray imaging with submicrometer resolution employing transparent luminescent screens. J Opt Soc Am A 15(7):1940–1951

    Google Scholar 

  91. Stampanoni M, Borchert G, Wyss P, Abela R, Patterson B, Hunt S, Vermeulen D, Rüegsegger P (2002) High resolution X-ray detector for synchrotron-based microtomography. Nucl Inst Methods Phys Res A 491:291–301

    Google Scholar 

  92. Salvo L, Suéry M, Marmottant A, Limodin N, Bernard D (2010) 3D imaging in material science: application of X-ray tomography. C R Phys 11:641–649

    Google Scholar 

  93. Murphy AG, Mathiesen RH, Houltz Y, Li J, Lockowandt C, Henriksson K, Melville N, Browne DJ (2016) Direct observation of spatially isothermal equiaxed solidification of an Al–Cu alloy in microgravity on board the MASER 13 sounding rocket. J Cryst Growth 454:96–104

    Google Scholar 

  94. Cahn JW (1967) The significance of average mean curvature and its determination by quantitative metallography. Trans Metall Soc AIME 239:610–616

    Google Scholar 

  95. Wang B, Tan D, Lee TL, Khong JC, Wang F, Eskin D, Connolley T, Fezzaa K, Mi J (2018) Ultrafast synchrotron X-ray imaging studies of microstructure fragmentation in solidification under ultrasound. Acta Mater 144:505–515

    Google Scholar 

  96. Limodin N, Salvo L, Boller E, Suéry M, Felberbaum M, Gailliègue S, Madi K (2009) In situ and real-time 3-D microtomography investigation of dendritic solidification in an Al-10 wt. % Cu alloy. Acta Mater 57:2300–2310

    Google Scholar 

  97. Limodin N, Salvo L, Suéry M, DiMichiel M (2007) In situ investigation by X-ray tomography of the overall and local microstructural changes occurring during partial remelting of an Al–15.8 wt.% Cu alloy. Acta Mater 55:3177–3191

    Google Scholar 

  98. Boden S, Eckert S, Willers B, Gerbeth G (2008) X-ray radioscopic visualization of the Solutal convection during solidification of a Ga-30 Wt Pct in alloy. Metall Mater Trans A 39A:613–623

    Google Scholar 

  99. Rakete C, Baumbach C, Goldschmidt A, Samberg D, Schroer CG, Breede F, Stenzel C, Zimmermann G, Pickmann C, Houltz Y, Lockowandt C, Svenonius O, Wiklund P, Mathiesen RH (2011) Compact x-ray microradiograph for in situ imaging of solidification processes: bringing in situ x-ray micro-imaging from the synchrotron to the laboratory. Rev Sci Instrum 82(10):105108

    Google Scholar 

  100. Nguyen-Thi H, Reinhart G, Salloum Abou Jaoude G, Mathiesen RH, Zimmermann G, Houltz Y, Voss D, Verga A, Browne DJ, Murphy AG, XRMON-GF (2013) A novel facility for solidification of metallic alloys with in situ and time-resolved X-ray radiographic characterization in microgravity conditions. J Cryst Growth 374:23–30

    Google Scholar 

  101. Murphy AG, Browne DJ, Mirihanage WU, Mathiesen RH (2013) Combined in situ X-ray radiographic observations and post-solidification metallographic characterisation of eutectic transformations in Al-Cu alloy systems. Acta Mater 61(12):4559–4571

    Google Scholar 

  102. Zhang Q, Fang H, Xue H, Pan S, Rettenmayr M, Zhu M (2017) Interaction of local solidification and remelting during dendrite coarsening – modeling and comparison with experiments. Sci Rep 7:17809

    Google Scholar 

  103. Prahl U, Schmitz G (2012) Integrative computational materials engineering: concepts and applications of a modular simulation platform. Wiley, Weinheim

    Google Scholar 

  104. Xiong Q, Baychev TG, Jivkov AP (2016) Review of pore network modelling of porous media: experimental characterisations, network constructions and applications to reactive transport. J Contam Hydrol 192:101–117

    Google Scholar 

  105. Hubbert MK (1956) Darcy law and the field equations of the flow of underground fluids. AIME Petrol Trans 207:222–239

    Google Scholar 

  106. Scheidegger AE (1960) The physics of flow through porous media. Macmillan, New York

    MATH  Google Scholar 

  107. Chauveteau G, Thirriot C (1967) Régimes d’écoulement en milieu poreux et limite de la loi de Darcy. La Houille Blanche 2:141–148

    Google Scholar 

  108. Miskimins JL, Lopez-Hernandez HD, Barree RD (2005) Non-Darcy flow in hydraulic fractures: does it really matter?, Paper SPE96389 Annual Technical Conference and Exhibition. Soc. of Pet. Eng., Dallas, Tex.

    Google Scholar 

  109. Forchheimer P (1901) Wasserberwegng durch Boden. Forschtlft ver D Ing 45(50):1782–1788

    Google Scholar 

  110. Dullien AL, Azzam MIS (1973) Flow rate-pressure gradient measurement in periodically nonuniform capillary tube. AICHE J 19:222–229

    Google Scholar 

  111. Geertsma M (1974) Estimating the coefficient of inertial resistance fluid flow through porous media. Soc Pet Eng J 14(5):445–450

    Google Scholar 

  112. MacDonald IF, El-Sayed MS, Mow K, Dullien FAL (1979) Flow through porous media, the Ergun equation revisited. Ind Eng Chem Fundam 18(3):199–208

    Google Scholar 

  113. Rasoloarijaona M, Auriault JL (1994) Nonlinear seepage flow through a rigid porous medium. Eur J Mech - B/Fluids 13(2):177–195

    MathSciNet  MATH  Google Scholar 

  114. Javadi M, Sharifzadeh M, Shahriar K (2010) A new geometrical model for non-linear fluid flow through rough fractures. J Hydrol 389:18–30

    Google Scholar 

  115. Rodríguez de Castro A, Radilla G (2017) Non-Darcian flow of shear-thinning fluids through packed beads: experiments and predictions using Forchheimer’s law and Ergun’s equation. Adv Water Resour 100:35–47

    Google Scholar 

  116. Cvetkovic VD (1986) A continuum approach to high velocity flow in a porous medium. Transp Porous Media 1(1):63–97

    Google Scholar 

  117. Giorgi T (1997) Derivation of the Forchheimer law via matched asymptotic expansions. Transp Porous Media 29(2):191–206

    MathSciNet  Google Scholar 

  118. Chen Z, Lyons SL, Qin G (2001) Derivation of the Forchheimer law via homogenization. Transp Porous Media 44(2):325–335

    MathSciNet  Google Scholar 

  119. Rocha RPA, Cruz ME (2010) Calculation of the permeability and apparent permeability of three-dimensional porous media. Transp Porous Media 83(2):349–373

    MathSciNet  Google Scholar 

  120. Mada M, Ajersch F (1996) Rheological model of semi-solid A356-SIC composite alloys. Part I: Dissociation of agglomerate structures during shear. Mater Sci Eng A 212(1):157–170

    Google Scholar 

  121. Fuoco R, Correa ER, de Andrade Bastos M (1998) Effect of grain refinement on feeding mechanisms in A356 aluminum alloy. AFS Trans 106:401–409

    Google Scholar 

  122. Fuoco R, Correa ER, Correa AVO (1995) Effect of modification on microporosity formation in 356 aluminum alloy. AFS Trans 103:379–386

    Google Scholar 

  123. Campbell J (2015) Complete casting handbook: metal casting processes, techniques and design. Chapter 6 - Casting alloys, 2nd edn. Butterworth-Heinemann, Oxford, pp 223–340

Download references

Acknowledgements

Figures 1 and 2: reprinted from Applied Mechanics Reviews, 46(1), Beckermann, C., Viskanta, R., mathematical modeling of transport phenomena during alloy solidification, 1–27, Copyright (1993), with permission from ASME.

Figure 3: reprinted from Journal of Alloys and Compounds, 625, Liu, Y., Jie, W., Gao, Z., Zheng, Y., Investigation on the formation of microporosity in alluminium alloys, 221–229, Copyright (2015), with permission from Elsevier.

Figure 4: reprinted by permission from RightsLink Permissions Springer Nature Customer Service Centre GmbH: Springer, Metallurgical and Materials Transactions A, 31(12), Experimental Difficulties Associated with Permeability Measurements in Aluminum Alloys, Nielsen, Ø., Arnberg, L., Copyright (2000).

Figure 5: reprinted from Journal of Crystal Growth, 192(1–2), Pompe, O., Rettenmayr, M., Microstructural changes during quenching, 300–306, Copyright (1998), with permission from Elsevier.

Figure 6: reprinted from Materials Science and Engineering A, 392, Bernard, D., Nielsen, Ø., Salvo, L., Cloetens, P., Permeability assessment by 3D interdendritic flow simulations on microtomography mappings of Al–Cu alloys, 112–120, Copyright (2005), with permission from Elsevier.

Figure 7: reprinted from Acta Materialia, 95, Murphy, A. G., Mirihanage, W. U., Browne, D. J., Mathiesen, R. H., Equiaxed dendritic solidification and grain refiner potency characterized through in situ X-radiography, 83–89, Copyright (2015), with permission from Elsevier.

Figure 8: reproduced from Salvo, L., Suéry, M., Marmottant, A., Limodin, N., Bernard, D. 3D imaging in material science: Application of X-ray tomography. Comptes Rendus Physique 2010; 11: 641–649. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Rodríguez de Castro.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez de Castro, A. A review on the porous medium approaches to model the flow of interdendritic liquid during the solidification of alloys in casting processes: theory and experiments. Int J Adv Manuf Technol 107, 4097–4121 (2020). https://doi.org/10.1007/s00170-020-05241-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05241-w

Keywords

Navigation