Skip to main content

Advertisement

Log in

A comprehensive review of carbon molecular sieve membranes for hydrogen production and purification

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Demand in clean alternative energy source together with fuel cells developments has attracted researchers towards utilization of hydrogen (H2). Common production of hydrogen from fossil fuels requires further pretreatment prior to the application, which makes separation and purification technology a very crucial component. Membrane reactors for water-gas shift reaction which was used for H2 generation by conversion of carbon monoxide revealed a good potential in shifting the reaction equilibrium. Two types of inorganic membranes widely studied for H2 separation and purification are dense phase metal and metal alloys and porous ceramic membranes. Among these two, microporous-type membrane was found to be more advantageous at harsh temperature during water-gas shift reaction. Sol-gel method employed for synthesised of porous ceramic membranes produced membranes with high stability and durability at high temperature and at tough hydrothermal environments. This work presents the critical issues regarding the membranes based on technical and economical perspective. Discussions are made on the significance of membrane technology advancement in order to strive for a clean environment with zero power technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Rezakazemi M, Sadrzadeh M, Matsuura T (2018) Thermally stable polymers for advanced high-performance gas separation membranes. Prog Energy Combust Sci 66:1–41

    Google Scholar 

  2. Ismail NH, Salleh WNW, Sazali N, Ismail AF (2018) Development and characterization of disk supported carbon membrane prepared by one-step coating-carbonization cycle. J Ind Eng Chem 57:313–321

    Google Scholar 

  3. Sazali N, Salleh WNW, Ismail AF, Nordin NAHM, Ismail NH, Mohamed MA et al (2018) Incorporation of thermally labile additives in carbon membrane development for superior gas permeation performance. J Nat Gas Sci Eng 49:376–384

    Google Scholar 

  4. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Google Scholar 

  5. Yang GCC, Yen C-H (2013) The use of different materials to form the intermediate layers of tubular carbon nanofibers/carbon/alumina composite membranes for removing pharmaceuticals from aqueous solutions. J Membr Sci 425–426:121–130

    Google Scholar 

  6. Achilias DS, Roupakias C, Megalokonomos P, Lappas AA, Antonakou ΕV (2007) Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). J Hazard Mater 149:536–542

    Google Scholar 

  7. Sazali N, Salleh WNW, Ismail AF, Kadirgama K, Othman FEC, Ismail NH (2018) Impact of stabilization environment and heating rates on P84 co-polyimide/nanocrystaline cellulose carbon membrane for hydrogen enrichment. Int J Hydrog Energy

  8. Sazali N, Salleh WNW, Ismail AF, Wong KC, Iwamoto Y (2018) Exploiting pyrolysis protocols on BTDA-TDI/MDI (P84) polyimide/nanocrystalline cellulose carbon membrane for gas separations. J Appl Polym Sci

  9. Kim S-J, Lee PS, Chang J-S, Nam S-E, Park Y-I (2018) Preparation of carbon molecular sieve membranes on low-cost alumina hollow fibers for use in C3H6/C3H8 separation. Sep Purif Technol 194:443–450

    Google Scholar 

  10. AlQahtani MS, Mezghani K (2018) Thermally rearranged polypyrrolone membranes for high-pressure natural gas separation applications. J Nat Gas Sci Eng 51:262–270

    Google Scholar 

  11. Li P, Wang Z, Qiao Z, Liu Y, Cao X, Li W et al (2015) Recent developments in membranes for efficient hydrogen purification. J Membr Sci 495:130–168

    Google Scholar 

  12. Haider S, Lindbråthen A, Lie JA, Andersen ICT, Hägg M-B (2018) CO2 separation with carbon membranes in high pressure and elevated temperature applications. Sep Purif Technol 190:177–189

    Google Scholar 

  13. Sanyal O, Hicks ST, Bhuwania N, Hays S, Kamath MG, Karwa S et al (2018) Cause and effects of hyperskin features on carbon molecular sieve (CMS) membranes. J Membr Sci 551:113–122

    Google Scholar 

  14. Sazali N, Salleh WNW, Ismail AF, Kadirgama K, Othman FEC (2018) P84 co-polyimide based-tubular carbon membrane: effect of heating rates on helium separations. Solid State Phenom 280:308–311

    Google Scholar 

  15. Sazali N, Salleh WNW, Ismail AF, Ismail NH, Mohamed MA, Nordin NAHM, et al. Enhanced gas separation performance using carbon membranes containing nanocrystalline cellulose and BTDA-TDI/MDI polyimide. Chemical Engineering Research and Design. 2018

  16. Sazali N, Salleh WNW, Ismail AF (2017) Carbon tubular membranes from nanocrystalline cellulose blended with P84 co-polyimide for H2 and He separation. Int J Hydrog Energy 42:9952–9957

    Google Scholar 

  17. Hamm JBS, Muniz AR, Pollo LD, Marcilio NR, Tessaro IC (2017) Experimental and computational analysis of carbon molecular sieve membrane formation upon polyetherimide pyrolysis. Carbon. 119:21–29

    Google Scholar 

  18. Hamm JBS, Ambrosi A, Griebeler JG, Marcilio NR, Tessaro IC, Pollo LD (2017) Recent advances in the development of supported carbon membranes for gas separation. Int J Hydrog Energy 42:24830–24845

    Google Scholar 

  19. Sazali N, Wan Salleh Wan N, Ismail Ahmad F, Ismail Nor H, Kadirgama K. A brief review on carbon selective membranes from polymer blends for gas separation performance. Rev Chem Eng 2019

  20. Chen S, Wang G, Li S, Li X, Yu H, Quan X (2020) Porous carbon membrane with enhanced selectivity and antifouling capability for water treatment under electrochemical assistance. J Colloid Interface Sci 560:59–68

    Google Scholar 

  21. Ahmadizadegan H, Tahriri M, Tahriri M, Padam M, Ranjbar M (2018) Polyimide-TiO2 nanocomposites and their corresponding membranes: synthesis, characterization, and gas separation applications. Solid State Sci

  22. Freeman B (1999) Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules. 32

  23. Yang Z, Guo W, Mahurin SM, Wang S, Chen H, Cheng L et al (2020) Surpassing Robeson upper limit for CO2/N2 separation with fluorinated carbon molecular sieve membranes. Chem.

  24. Bernardo G, Araújo T, da Silva LT, Sousa J, Mendes A (2019) Recent advances in membrane technologies for hydrogen purification. Int J Hydrog Energy

  25. Jiao W, Ban Y, Shi Z, Jiang X, Li Y, Yang W (2017) Gas separation performance of supported carbon molecular sieve membranes based on soluble polybenzimidazole. J Membr Sci 533:1–10

    Google Scholar 

  26. Rungta M, Wenz GB, Zhang C, Xu L, Qiu W, Adams JS et al (2017) Carbon molecular sieve structure development and membrane performance relationships. Carbon. 115:237–248

    Google Scholar 

  27. Ogieglo W, Puspasari T, Hota MK, Wehbe N, Alshareef HN, Pinnau I (2020) Nanohybrid thin-film composite carbon molecular sieve membranes. Materials Today Nano 9:100065

    Google Scholar 

  28. Ogieglo W, Puspasari T, Ma X, Pinnau I (2020) Sub-100 nm carbon molecular sieve membranes from a polymer of intrinsic microporosity precursor: physical aging and near-equilibrium gas separation properties. J Membr Sci 597:117752

    Google Scholar 

  29. Kamath MG, Fu S, Itta AK, Qiu W, Liu G, Swaidan R et al (2018) 6FDA-DETDA: DABE polyimide-derived carbon molecular sieve hollow fiber membranes: circumventing unusual aging phenomena. J Membr Sci 546:197–205

    Google Scholar 

  30. Awad A, Aljundi IH (2018) Layer-by-layer assembly of carbide derived carbon-polyamide membrane for CO2 separation from natural gas. Energy. 157:188–199

    Google Scholar 

  31. He X (2017) Techno-economic feasibility analysis on carbon membranes for hydrogen purification. Sep Purif Technol 186:117–124

    Google Scholar 

  32. Sreedhar I, Vaidhiswaran R, Kamani BM, Venugopal A (2017) Process and engineering trends in membrane based carbon capture. Renew Sust Energ Rev 68:659–684

    Google Scholar 

  33. Kruse N, Schießer Y, Kämnitz S, Richter H, Voigt I, Braun G et al (2016) Carbon membrane gas separation of binary CO2 mixtures at high pressure. Sep Purif Technol 164:132–137

    Google Scholar 

  34. Tseng H-H, Wang C-T, Zhuang G-L, Uchytil P, Reznickova J, Setnickova K (2016) Enhanced H2/CH4 and H2/CO2 separation by carbon molecular sieve membrane coated on titania modified alumina support: effects of TiO2 intermediate layer preparation variables on interfacial adhesion. J Membr Sci 510:391–404

    Google Scholar 

  35. Liu J, Hou X, Park HB, Lin H (2016) High-performance polymers for membrane CO2/N2 separation. Chem Eur J 22:15980–15990

    Google Scholar 

  36. Zhang B, Li L, Wang C, Pang J, Zhang S, Jian X et al (2015) Effect of membrane-casting parameters on the microstructure and gas permeation of carbon membranes. RSC Adv 5:60345–60353

    Google Scholar 

  37. Briceño K, Iulianelli A, Montané D, Garcia-Valls R, Basile A (2012) Carbon molecular sieve membranes supported on non-modified ceramic tubes for hydrogen separation in membrane reactors. Int J Hydrog Energy 37:13536–13544

    Google Scholar 

  38. Barison S, Fasolin S, Boldrini S, Ferrario A, Romano M, Montagner F et al (2018) PdAg/alumina membranes prepared by high power impulse magnetron sputtering for hydrogen separation. Int J Hydrog Energy 43:7982–7989

    Google Scholar 

  39. Grainger D, Hägg M-B (2008) The recovery by carbon molecular sieve membranes of hydrogen transmitted in natural gas networks. Int J Hydrog Energy 33:2379–2388

    Google Scholar 

  40. Hong M, Chen EYX (2017) Chemically recyclable polymers: a circular economy approach to sustainability. Green Chem 19:3692–3706

    Google Scholar 

  41. Abedini R, Nezhadmoghadam A. APPLICATION OF MEMBRANE IN GAS SEPARATION PROCESSES: ITS SUITABILITY AND MECHANISMS. Petroleum and Coal. 2010

  42. Sridhar S, Smitha B, Shaik A (2005) Pervaporation-based separation of methanol/MTBE mixtures—a review. Sep Purif Rev 34:1–33

    Google Scholar 

  43. Krishna R (2018) Methodologies for screening and selection of crystalline microporous materials in mixture separations. Sep Purif Technol 194:281–300

    Google Scholar 

  44. Fuertes AB, Nevskaia DM, Centeno TA (1999) Carbon composite membranes from Matrimid® and Kapton® polyimides for gas separation. Microporous Mesoporous Mater 33:115–125

    Google Scholar 

  45. Maya EM, Lozano AE, de Abajo J, de la Campa JG (2007) Chemical modification of copolyimides with bulky pendent groups: effect of modification on solubility and thermal stability. Polym Degrad Stab 92:2294–2299

    Google Scholar 

  46. Maya EM, Tena A, de Abajo J, de la Campa JG, Lozano AE (2010) Partially pyrolyzed membranes (PPMs) derived from copolyimides having carboxylic acid groups. Preparation and gas transport properties. J Membr Sci 349:385–392

    Google Scholar 

  47. Yong WF, Li FY, Chung T-S, Tong YW (2013) Highly permeable chemically modified PIM-1/Matrimid membranes for green hydrogen purification. J Mater Chem A 1:13914–13925

    Google Scholar 

  48. Inagaki M, Ohta N, Hishiyama Y (2013) Aromatic polyimides as carbon precursors. Carbon. 61:1–21

    Google Scholar 

  49. Pirouzfar V, Moghaddam AZ, Omidkhah MR, Hosseini SS (2014) Investigating the effect of dianhydride type and pyrolysis condition on the gas separation performance of membranes derived from blended polyimides through statistical analysis. J Ind Eng Chem 20:1061–1070

    Google Scholar 

  50. Salehian P, Yong WF, Chung T-S (2016) Development of high performance carboxylated PIM-1/P84 blend membranes for pervaporation dehydration of isopropanol and CO2/CH4 separation. J Membr Sci 518:110–119

    Google Scholar 

  51. Fu S, Sanders ES, Kulkarni SS, Wenz GB, Koros WJ (2015) Temperature dependence of gas transport and sorption in carbon molecular sieve membranes derived from four 6FDA based polyimides: entropic selectivity evaluation. Carbon. 95:995–1006

    Google Scholar 

  52. Fu S, Sanders ES, Kulkarni S, Chu Y-H, Wenz GB, Koros WJ (2017) The significance of entropic selectivity in carbon molecular sieve membranes derived from 6FDA/DETDA:DABA(3:2) polyimide. J Membr Sci 539:329–343

    Google Scholar 

  53. Fu S, Wenz GB, Sanders ES, Kulkarni SS, Qiu W, Ma C et al (2016) Effects of pyrolysis conditions on gas separation properties of 6FDA/DETDA:DABA(3:2) derived carbon molecular sieve membranes. J Membr Sci 520:699–711

    Google Scholar 

  54. Cui L, Qiu W, Paul DR, Koros WJ (2011) Physical aging of 6FDA-based polyimide membranes monitored by gas permeability. Polymer. 52:3374–3380

    Google Scholar 

  55. Favvas EP, Kouvelos EP, Romanos GE, Pilatos GI, Mitropoulos AC, Kanellopoulos NK (2008) Characterization of highly selective microporous carbon hollow fiber membranes prepared from a commercial co-polyimide precursor. J Porous Mater 15:625–633

    Google Scholar 

  56. Ba C, Langer J, Economy J (2009) Chemical modification of P84 copolyimide membranes by polyethylenimine for nanofiltration. J Membr Sci 327:49–58

    Google Scholar 

  57. Shen Y, Lua AC (2012) Structural and transport properties of BTDA-TDI/MDI co-polyimide (P84)–silica nanocomposite membranes for gas separation. Chem Eng J 188:199–209

    Google Scholar 

  58. Sazali N, Salleh WNW, Ismail AF, Ismail NH, Aziz F, Yusof N et al (2018) Effect of stabilization temperature during pyrolysis process of P84 co-polyimide-based tubular carbon membrane for H 2 /N 2 and He/N 2 separations. IOP Conference Series: Mater Sci Eng C 342:012027

  59. Su J, Lua AC (2007) Effects of carbonisation atmosphere on the structural characteristics and transport properties of carbon membranes prepared from Kapton® polyimide. J Membr Sci 305:263–270

    Google Scholar 

  60. Suda H, Haraya K (1997) Gas permeation through micropores of carbon molecular sieve membranes derived from Kapton polyimide. J Phys Chem B 101:3988–3994

    Google Scholar 

  61. Hayashi J-i, Mizuta H, Yamamoto M, Kusakabe K, Morooka S (1997) Pore size control of carbonized BPDA-pp′ ODA polyimide membrane by chemical vapor deposition of carbon. J Membr Sci 124:243–251

    Google Scholar 

  62. Fakirov S (2018) Nanofibrillar polymer–polymer and single polymer composites via the “converting instead of adding” concept – examples of true polymer nanocomposite. Adv Ind Eng Polym Resh 1:40–47

    Google Scholar 

  63. Hosseini SS, Omidkhah MR, Zarringhalam Moghaddam A, Pirouzfar V, Krantz WB, Tan NR (2014) Enhancing the properties and gas separation performance of PBI–polyimides blend carbon molecular sieve membranes via optimization of the pyrolysis process. Sep Purif Technol 122:278–289

    Google Scholar 

  64. Fan H, Ran F, Zhang X, Song H, Jing W, Shen K et al (2014) A hierarchical porous carbon membrane from polyacrylonitrile/polyvinylpyrrolidone blending membranes: preparation, characterization and electrochemical capacitive performance. J Energy Chem 23:684–693

    Google Scholar 

  65. Itta AK, Tseng H-H, Wey M-Y (2011) Fabrication and characterization of PPO/PVP blend carbon molecular sieve membranes for H2/N2 and H2/CH4 separation. J Membr Sci 372:387–395

    Google Scholar 

  66. Khatua BB, Das CK (2000) Effect of processing on the thermal stability of blends based on polyurethane. Part I Polymer Degradation and Stability 69:381–386

    Google Scholar 

  67. Koresh J, Soffer A (1980) Molecular sieving range of pore diameters of adsorbents. J Chem Soc, Faraday Trans 1 76:2507–2509

  68. Salinas O, Ma X, Litwiller E, Pinnau I (2016) Ethylene/ethane permeation, diffusion and gas sorption properties of carbon molecular sieve membranes derived from the prototype ladder polymer of intrinsic microporosity (PIM-1). J Membr Sci 504:133–140

    Google Scholar 

  69. Parsley D, Ciora RJ, Flowers DL, Laukaitaus J, Chen A, Liu PKT et al (2014) Field evaluation of carbon molecular sieve membranes for the separation and purification of hydrogen from coal- and biomass-derived syngas. J Membr Sci 450:81–92

    Google Scholar 

  70. Rodrigues SC, Whitley R, Mendes A (2014) Preparation and characterization of carbon molecular sieve membranes based on resorcinol–formaldehyde resin. J Membr Sci 459:207–216

    Google Scholar 

  71. Llosa Tanco MA, Pacheco Tanaka DA, Mendes A (2015) Composite-alumina-carbon molecular sieve membranes prepared from novolac resin and boehmite. Part II: effect of the carbonization temperature on the gas permeation properties. Int J Hydrog Energy 40:3485–3496

    Google Scholar 

  72. Sasikumar B, Arthanareeswaran G, Ismail AF (2018) Recent progress in ionic liquid membranes for gas separation. J Mol Liq 266:330–341

    Google Scholar 

  73. Bernardo G, Araújo T, da Silva LT, Sousa J, Mendes A (2020) Recent advances in membrane technologies for hydrogen purification. Int J Hydrog Energy 45:7313–7338

    Google Scholar 

  74. Bakonyi P, Nemestóthy N, Bélafi-Bakó K (2013) Biohydrogen purification by membranes: an overview on the operational conditions affecting the performance of non-porous, polymeric and ionic liquid based gas separation membranes. Int J Hydrog Energy 38:9673–9687

    Google Scholar 

  75. Dixon RK, Li J, Wang MQ (2016) 13 - Progress in hydrogen energy infrastructure development—addressing technical and institutional barriers. In: Gupta RB, Basile A (eds) Veziroğlu TN, editors. Woodhead Publishing, Compendium of Hydrogen Energy, pp 323–343

    Google Scholar 

  76. Safari F, Dincer I (2020) A review and comparative evaluation of thermochemical water splitting cycles for hydrogen production. Energy Convers Manag 205:112182

    Google Scholar 

  77. Lu GQ, Diniz da Costa JC, Duke M, Giessler S, Socolow R, Williams RH et al (2007) Inorganic membranes for hydrogen production and purification: a critical review and perspective. J Colloid Interface Sci 314:589–603

    Google Scholar 

  78. Abdalla AM, Hossain S, Nisfindy OB, Azad AT, Dawood M, Azad AK (2018) Hydrogen production, storage, transportation and key challenges with applications: a review. Energy Convers Manag 165:602–627

    Google Scholar 

  79. Ajanovic A, Haas R (2018) Economic prospects and policy framework for hydrogen as fuel in the transport sector. Energy Policy 123:280–288

    Google Scholar 

  80. Živković LA, Pohar A, Likozar B, Nikačević NM (2020) Reactor conceptual design by optimization for hydrogen production through intensified sorption- and membrane-enhanced water-gas shift reaction. Chem Eng Sci 211:115174

    Google Scholar 

  81. Burra KRG, Bassioni G, Gupta AK (2018) Catalytic transformation of H2S for H2 production. Int J Hydrog Energy 43:22852–22860

    Google Scholar 

  82. Simonov AN, Plyusnin PE, Shubin YV, Kvon RI, Korenev SV, Parmon VN (2012) Hydrogen electrooxidation over palladium–gold alloy: effect of pretreatment in ethylene on catalytic activity and CO tolerance. Electrochim Acta 76:344–353

    Google Scholar 

  83. Jordal K, Anantharaman R, Peters TA, Berstad D, Morud J, Nekså P et al (2015) High-purity H2 production with CO2 capture based on coal gasification. Energy 88:9–17

    Google Scholar 

  84. Chen W-H, Chen C-Y (2020) Water gas shift reaction for hydrogen production and carbon dioxide capture: a review. Appl Energy 258:114078

    Google Scholar 

  85. Favvas EP, Katsaros FK, Papageorgiou SK, Sapalidis AA, Mitropoulos AC (2017) A review of the latest development of polyimide based membranes for CO2 separations. React Funct Polym 120:104–130

    Google Scholar 

  86. Sunarso J, Hashim SS, Lin YS, Liu SM (2017) Membranes for helium recovery: an overview on the context, materials and future directions. Sep Purif Technol 176:335–383

    Google Scholar 

  87. Structure/permeability relationships of polyimide membranes. II. Journal of Polymer Science Part B: Polymer Physics. 1990;28:2291–304

  88. Stern SA, Mi Y, Yamamoto H, Clair AKS (1989) Structure/permeability relationships of polyimide membranes. Applications to the separation of gas mixtures. J Polym Sci B Polym Phys 27:1887–1909

    Google Scholar 

  89. McHattie JS, Koros WJ, Paul DR (1991) Gas transport properties of polysulphones: 2. Effect of bisphenol connector groups. Polymer. 32:2618–2625

    Google Scholar 

  90. McHattie JS, Koros WJ, Paul DR (1991) Gas transport properties of polysulphones: 1. Role of symmetry of methyl group placement on bisphenol rings. Polymer. 32:840–850

    Google Scholar 

  91. Aguilar-Vega M, Paul DR (1993) Gas transport properties of polycarbonates and polysulfones with aromatic substitutions on the bisphenol connector group. J Polym Sci B Polym Phys 31:1599–1610

    Google Scholar 

  92. Zhao Y, Zhao D, Kong C, Zhou F, Jiang T, Chen L (2019) Design of thin and tubular MOFs-polymer mixed matrix membranes for highly selective separation of H2 and CO2. Sep Purif Technol 220:197–205

    Google Scholar 

  93. Perez E, J.D. Kalaw G, Ferraris J, Balkus K, H. Musselman I. Amine-functionalized (Al) MIL-53/VTEC™ mixed-matrix membranes for H2/CO2 mixture separations at high pressure and high temperature2017

  94. Mundstock A, Friebe S, Caro J (2017) On comparing permeation through Matrimid®-based mixed matrix and multilayer sandwich FAU membranes: H2/CO2 separation, support functionalization and ion exchange. Int J Hydrog Energy 42:279–288

    Google Scholar 

  95. Cao L, Tao K, Huang A, Kong C, Chen L (2013) A highly permeable mixed matrix membrane containing CAU-1-NH2 for H2 and CO2 separation. Chem Commun 49:8513–8515

    Google Scholar 

  96. Ordoñez MJC, Balkus KJ, Ferraris JP, Musselman IH (2010) Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. J Membr Sci 361:28–37

    Google Scholar 

  97. Friebe S, Geppert B, Steinbach F, Caro J (2017) Metal–organic framework UiO-66 layer: a highly oriented membrane with good selectivity and hydrogen permeance. ACS Appl Mater Interfaces 9:12878–12885

    Google Scholar 

  98. Doğu M, Ercan N (2016) High performance cyclic olefin copolymer (COC) membranes prepared with melt processing method and using of surface modified graphitic nano-sheets for H2/CH4 and H2/CO2 separation. Chem Eng Res Des 109:455–463

    Google Scholar 

  99. Sánchez-Laínez J, Zornoza B, Téllez C, Coronas J (2016) On the chemical filler–polymer interaction of nano- and micro-sized ZIF-11 in PBI mixed matrix membranes and their application for H2/CO2 separation. J Mater Chem A 4:14334–14341

    Google Scholar 

  100. Zhuang G-L, Wey M-Y, Tseng H-H (2015) The density and crystallinity properties of PPO-silica mixed-matrix membranes produced via the in situ sol-gel method for H2/CO2 separation. II: effect of thermal annealing treatment. Chem Eng Res Des 104:319–332

    Google Scholar 

  101. Sánchez-Laínez J, Zornoza B, Mayoral Á, Berenguer-Murcia Á, Cazorla-Amorós D, Téllez C et al (2015) Beyond the H2/CO2 upper bound: one-step crystallization and separation of nano-sized ZIF-11 by centrifugation and its application in mixed matrix membranes. J Mater Chem A 3:6549–6556

    Google Scholar 

  102. Hu J, Cai H, Ren H, Wei Y, Xu Z, Liu H et al (2010) Mixed-matrix membrane hollow fibers of Cu3(BTC)2 MOF and polyimide for gas separation and adsorption. Ind Eng Chem Res 49:12605–12612

    Google Scholar 

  103. Spallina V, Pandolfo D, Battistella A, Romano MC, Van Sint AM, Gallucci F (2016) Techno-economic assessment of membrane assisted fluidized bed reactors for pure H2 production with CO2 capture. Energy Convers Manag 120:257–273

    Google Scholar 

  104. Yin H, Shang J, Choi J, Yip ACK (2019) Generation and extraction of hydrogen from low-temperature water-gas-shift reaction by a ZIF-8-based membrane reactor. Microporous Mesoporous Mater 280:347–356

    Google Scholar 

  105. Nalbant Y, Colpan CO, Devrim Y. Energy and exergy performance assessments of a high temperature-proton exchange membrane fuel cell based integrated cogeneration system. International Journal of Hydrogen Energy. 2019

  106. Ismail A, Ridzuan N, Abd Rahman S. Latest development on the membrane formation for gas separation2002

  107. Wisniak J. Thomas Graham. I. Contributions to thermodynamics, chemistry, and the occlusion of gases. Educación Química 2013;24:316–325

  108. Koros WJ, Mahajan R (2000) Pushing the limits on possibilities for large scale gas separation: which strategies? J Membr Sci 175:181–196

    Google Scholar 

  109. Eguchi K, Chai MR, Yamashita Y, Machida M, Arai H. Selective hydrogen permeation through metal-dispersed porous alumina membrane. In: lnui T, Fujimoto K, Uchijima T, Masai M, editors. Studies in Surface Science and Catalysis: Elsevier; 1993. p. 195–200

  110. Li ZY, Maeda H, Kusakabe K, Morooka S, Anzai H, Akiyama S (1993) Preparation of palladium-silver alloy membranes for hydrogen separation by the spray pyrolysis method. J Membr Sci 78:247–254

    Google Scholar 

  111. Rahimpour MR, Samimi F, Babapoor A, Tohidian T, Mohebi S (2017) Palladium membranes applications in reaction systems for hydrogen separation and purification: a review. Chem Eng Process Process Intensif 121:24–49

    Google Scholar 

  112. Wei L, Hu X, Yu J, Huang Y (2014) Aluminizing and oxidation treatments on the porous stainless steel substrate for preparation of H2-permeable composite palladium membranes. Int J Hydrog Energy 39:18618–18624

    Google Scholar 

  113. Lim H-R, Eom NSA, Cho J-H, Cho H-B, Choa Y-H (2018) Hydrogen gettering of titaniumpalladium/palladium nanocomposite films synthesized by cosputtering and vacuum-annealing. Int J Hydrog Energy 43:19990–19997

    Google Scholar 

  114. Guo Y, Wu H, Jin Y, Zhou L, Chen Q, Fan X (2017) Deposition of TS-1 zeolite film on palladium membrane for enhancement of membrane stability. Int J Hydrog Energy 42:27111–27121

    Google Scholar 

  115. Nayebossadri S, Fletcher S, Speight JD, Book D (2016) Hydrogen permeation through porous stainless steel for palladium-based composite porous membranes. J Membr Sci 515:22–28

    Google Scholar 

  116. Conde J, Marono M, Sánchez J. Pd-based membranes for hydrogen separation: review of alloying elements and their influence on membrane properties 2016

  117. Sharma R, Kumar A, Upadhyay RK (2018) Characteristic of a multi-pass membrane separator for hydrogen separation through self-supported PdAg membranes. Int J Hydrog Energy 43:5019–5032

    Google Scholar 

  118. Pereira AI, Pérez P, Rodrigues SC, Mendes A, Madeira LM, Tavares CJ (2015) Deposition of Pd–Ag thin film membranes on ceramic supports for hydrogen purification/separation. Mater Res Bull 61:528–533

    Google Scholar 

  119. Pereira LMC, Vega LF (2018) A systematic approach for the thermodynamic modelling of CO2-amine absorption process using molecular-based models. Appl Energy 232:273–291

    Google Scholar 

  120. Chang C-H, Li C-L, Yu C-C, Chen Y-L, Chyntara S, Chu JP et al (2018) Beneficial effects of thin film metallic glass coating in reducing adhesion of platelet and cancer cells: clinical testing. Surf Coat Technol 344:312–321

    Google Scholar 

  121. Rikkou MD, Patrickios CS (2011) Polymers prepared using cleavable initiators: synthesis, characterization and degradation. Prog Polym Sci 36:1079–1097

    Google Scholar 

  122. Li C, Yuan Z, Ye L (2019) Facile construction of enhanced multiple interfacial interactions in EPDM/zinc dimethacrylate (ZDMA) rubber composites: highly reinforcing effect and improvement mechanism of sealing resilience. Compos A: Appl Sci Manuf 126:105580

    Google Scholar 

  123. Kruse N, Schießer Y, Reger-Wagner N, Richter H, Voigt I, Braun G et al (2017) High pressure adsorption, permeation and swelling of carbon membranes – measurements and modelling at up to 20MPa. J Membr Sci 544:12–17

    Google Scholar 

  124. Lee CH, Lee JK, Zhao B, Fahy KF, LaManna JM, Baltic E et al (2020) Temperature-dependent gas accumulation in polymer electrolyte membrane electrolyzer porous transport layers. J Power Sources 446:227312

    Google Scholar 

  125. Lock SSM, Lau KK, Shariff AM, Yeong YF (2017) Process modelling and optimization of thickness dependent physical aging in polymeric membranes. In: Espuña A, Graells M (eds) Puigjaner L, editors. Elsevier, Computer Aided Chemical Engineering, pp 367–372

    Google Scholar 

  126. Takht Ravanchi M, Kaghazchi T, Kargari A (2009) Application of membrane separation processes in petrochemical industry: a review. Desalination. 235:199–244

    Google Scholar 

  127. Sheikh HM, Ullah A, Hong K, Zaman M (2018) Thermo-economic analysis of integrated gasification combined cycle (IGCC) power plant with carbon capture. Chem Eng Process Process Intensif 128:53–62

    Google Scholar 

  128. Xomeritakis G, Lin YS (1996) Fabrication of a thin palladium membrane supported in a porous ceramic substrate by chemical vapor deposition. J Membr Sci 120:261–272

    Google Scholar 

  129. Dillon E, Jimenez G, Davie A, Bulak J, Nesbit S, Craft A (2009) Factors influencing the tensile strength, hardness, and ductility of hydrogen-cycled palladium. Mater Sci Eng A 524:89–97

    Google Scholar 

  130. Basile A, Tong J, Millet P (2013) 2 - inorganic membrane reactors for hydrogen production: an overview with particular emphasis on dense metallic membrane materials. In: Basile A, editor. Woodhead Publishing, Handbook of Membrane Reactors, pp 42–148

    Google Scholar 

  131. Soleimany A, Hosseini SS, Gallucci F (2017) Recent progress in developments of membrane materials and modification techniques for high performance helium separation and recovery: a review. Chem Eng Process Process Intensif 122:296–318

    Google Scholar 

  132. Wan J, Feng X, Li Y, He J, Zhao N, Liu Z et al (2019) Effect of mesoporous silica molecular sieve coating on nZVI for 2,4-DCP degradation: morphology and mechanism during the reaction. Chem Eng Process Process Intensif 135:68–81

    Google Scholar 

  133. Joly C, Goizet S, Schrotter JC, Sanchez J, Escoubes M (1997) Sol-gel polyimide-silica composite membrane: gas transport properties. J Membr Sci 130:63–74

    Google Scholar 

  134. Wang Y, Xu J, Zang H, Wang Z (2019) Synthesis and properties of sulfonated poly(arylene ether ketone sulfone) containing amino groups/functional titania inorganic particles hybrid membranes for fuel cells. Int J Hydrog Energy 44:6136–6147

    Google Scholar 

  135. Zhang Y, Haynes JA, Pint BA, Wright IG, Lee WY (2003) Martensitic transformation in CVD NiAl and (Ni,Pt)Al bond coatings. Surf Coat Technol 163–164:19–24

    Google Scholar 

  136. Cheng L-H, Fu Y-J, Liao K-S, Chen J-T, Hu C-C, Hung W-S et al (2014) A high-permeance supported carbon molecular sieve membrane fabricated by plasma-enhanced chemical vapor deposition followed by carbonization for CO2 capture. J Membr Sci 460:1–8

    Google Scholar 

  137. Czympiel L, Frank M, Mettenbörger A, Hühne S-M, Mathur S (2018) High activity heterogeneous catalysts by plasma-enhanced chemical vapor deposition of volatile palladium complexes on biomorphic carbon. Comptes Rendus Chimie 21:943–951

    Google Scholar 

  138. Yoshimune M, Haraya K (2019) Simple control of the pore structures and gas separation performances of carbon hollow fiber membranes by chemical vapor deposition of propylene. Sep Purif Technol 223:162–167

    Google Scholar 

  139. Knapp MC, Woodward PM (2006) A-site cation ordering in AA′BB′O6 perovskites. J Solid State Chem 179:1076–1085

    Google Scholar 

  140. Athayde DD, Souza DF, Silva AMA, Vasconcelos D, Nunes EHM, Diniz da Costa JC et al (2016) Review of perovskite ceramic synthesis and membrane preparation methods. Ceram Int 42:6555–6571

    Google Scholar 

  141. Saeidi S, Amin NAS, Rahimpour MR (2014) Hydrogenation of CO2 to value-added products—a review and potential future developments. J CO2 Util 5:66–81

Download references

Funding

This work was supported by the Ministry of Higher Education and University Malaysia Pahang under the Fundamental Research Grant Scheme (Project Number: RACER/1/2019/TK10/UMP//2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norazlianie Sazali.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sazali, N. A comprehensive review of carbon molecular sieve membranes for hydrogen production and purification. Int J Adv Manuf Technol 107, 2465–2483 (2020). https://doi.org/10.1007/s00170-020-05196-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05196-y

Keywords

Navigation