Skip to main content
Log in

Synthesis of a novel nano-ceramic membrane for hydrogen separation and purification

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Low cost, easy maintenance, small power consumption, simple increasing of task scale with respect to compact size of equipment, simple exploitation, low-cost product and performing extraction, and purification in single step are some benefits of the membrane process in comparison with conventional separation processes. Nowadays, nano-ceramic membranes are used in many separating processes because of their fascinating mechanical and chemical resistance and sufficient gas separation performance. Study on the structure, permeability, and selectivity of these membranes are newly appeared topics. In this research, a nano-ceramic membrane was synthesized using tetraethyl orta-cycle as the silica source with immersion coating on porous-based alpha alumina. Studying the synthesized membrane based on images obtained from the scanning electron microscope (SEM), it was found that a silicate layer with 5.88 μm thickness is developed on the base after four times of deposition. The morphology on the surface of the membrane was uniform without defect. The gas permeability test has shown that by increasing pressure, the flow rate and membrane permeability increase for both gases due to the greater propulsion by the difference of pressure between two sides of the membrane which makes more gas molecules pass through the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Majidi, R.F., Nezafati, N., Pazouki, M.: The effect of synthesis parameters on morphology and diameter of electrospun hydroxyapatite nanofibers. J. Aust. Ceram. Soc. (2017). https://doi.org/10.1007/s41779-017-0028-8

  2. Abdulhameed, M.A., Othman, M.H.D., Ismail, A.F., Matsuura, T., Harun, Z., Rahman, M.A., Puteh, M.H., Jaafar, J.: Preparation and characterisation of inexpensive porous kaolin hollow fibre as ceramic membrane supports for gas separation application. J. Aust. Ceram. Soc. (2017). https://doi.org/10.1007/s41779-017-0076-0

  3. Tudorachi, N., Chiriac, A.P.: Poly(vinyl alcohol-co-lactic acid)/hydroxyapatite composites: synthesis and characterization. J. Polym. Environ. 19(2), 546–558 (2011)

    Article  Google Scholar 

  4. Anvari, A., Yancheshme, A.A., Rekaabdar, F., Hemmati, M., Tavakolmoghadam, M., Safekordi, A.: PVDF/PAN blend membrane: preparation, Characterization and Fouling Analysis. J. Polym. Environ. (2011). https://doi.org/10.1007/s10924-016-0889-x

  5. Salimi, M., Pirouzfar, V., Kianfar, E.: Enhanced gas transport properties in silica nanoparticles filler-polystyrene nanocomposite membranes. Colloid. Polym. Sci. 295(1), 215–226

  6. Pirouzfar, V., Hosseini, S.S., Omidkhah, M.R., Moghaddam, A.Z.: J Ind Eng Chem. 20, 1061 (2014)

    Article  Google Scholar 

  7. Pirouzfar, V., Hosseini, S.S., Omidkhah, M.R., Moghaddam, A.Z.: Polym Eng Sci. 54, 147 (2014)

    Article  Google Scholar 

  8. Hosseini, S.S., Omidkhah, M.R., Moghaddam, A.Z., Pirouzfar, V., Krantz, W.B., Tan, N.R.: J. Sep. Purif. 122, 278 (2014)

    Article  Google Scholar 

  9. Pirouzfar, V.: Integrated modeling of membrane performance for gas separation. Lap Lambert Academic Publishing GmbH KG, Germany (2015)

    Google Scholar 

  10. Pirouzfar, V.: High performance gas separation carbon molecular sieve membranes. Lap Lambert Academic Publishing GmbH KG, Germany (2015)

    Google Scholar 

  11. Soleymanipour, S.F., Saeedi Dehaghani, A.H., Pirouzfar, V., Alihosseini, A.: The morphology and gas-separation performance of membranes comprising multiwalled carbon nanotubes/polysulfone–Kapton. J. Appl. Polym. Sci. (2016). https://doi.org/10.1002/app.43839

  12. Nematollahi, M.H., Saeedi Dehaghani, A.H., Abedini, R.: Korean. J. Chem. Eng. 33, 657 (2016)

    Article  Google Scholar 

  13. Jinapong, N., Suphantharika, M., Jamnong, P.: Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. J. Food. Eng. 84(2), 194–205 (2008)

    Article  Google Scholar 

  14. Siddaramaiah, H.K.: Chemical compatibility of PU/PAN interpenetrating polymer network membrane with substituted aromatic solvents. J. Hazard. Mater. 148, 467–476 (2007)

    Article  Google Scholar 

  15. Lu, G.Q., Diniz da Costa, I.C., Duke, M., Giessler, S., Socolow, R., Williams, R.H., Kreutz, T.: Inorganic membranes for hydrogen production and purification: a critical review and perspective. J. Colloid. Interface. Sci. 314, 589–603 (2007)

    Article  Google Scholar 

  16. Wang, L., Cao, Y., Zhou, M., Zhou, S.J., Yuan, Q.: Novel copolyimide membranes for gas separation. J. Membr. Sci. 305, 338–346 (2007)

    Article  Google Scholar 

  17. Ismail, A.F., Norida, R., Sunarti, A.R.: Latest development of mixed matrix membrane using glassy polymer as continuous phase for gas separation. J. Sci. 24, 1025–1043 (2005)

    Google Scholar 

  18. Wang, J., Tsuru, T.: Cobalt-doped silica membranes for pervaporation dehydration of ethanol/water solutions. J. Membr. Sci. 369, 13–19 (2009)

    Article  Google Scholar 

  19. Sanchese, J.M., Marono, M.: Bench-scale study of separation of hydrogen from gasification gases using a palladium-based membrane reactor. Fuel. 116, 894–903 (2014)

    Article  Google Scholar 

  20. Balachandran, U., Lee, T.H.: Dense cermet membranes for hydrojen separation., peparation and purification. Technology. 121, 54–59 (2014)

    Google Scholar 

  21. Hwang, K., et al.: Bi-functional hydrogen membrane for simultaneous chemical reaction and hydrogen separation. Hydrog. Energy. 39, 2614–2620 (2014)

    Article  Google Scholar 

  22. Kargari, A., Arabi, A.: Preparation, characterization and gas permeation properties of PDMS/PEI composite asymmetric membrane for effective separation of hydrogen from H2/CH4 mixed gas. Hydrog. Energy. 39, 1410–1419 (2014)

    Article  Google Scholar 

  23. Wang, H., Dong, X.: Highly stable bilayer MFI zeolite membranes for high temperature hydrogen separation. J. Membr. Sci. 450, 425–432 (2014)

    Article  Google Scholar 

  24. Zhang, W., Gaggl, M.: Gas separation using porous cement membrane. J. Environ. Sci. 26, 140–146 (2014)

    Article  Google Scholar 

  25. Inoue, H., Okubo, T.: Introduction of specific gas selectivity to porous glass membranes by treatment with tetraethoxysilane. J. Membr. Sci. 42, 109 (1989)

    Article  Google Scholar 

  26. Prabhu, A.K., Oyama, S.T.: Highly hydrogen selective ceramic membranes: application to the transformation of greenhouse gases. J. Membr. Sci. 176, 233 (2000)

    Article  Google Scholar 

  27. Hwang, G.J., Onuki, K., Shimizu, S., Ohya, H.: Hydrogen separation in H2–H2O–HI gaseous mixture using the silica membrane prepared by chemical vapor deposition. J. Membr. Sci. 162, 83 (1999)

    Article  Google Scholar 

  28. Yan, S., Maeda, H., Kusakabe, K., Morooka, S., Akiyama, Y.: Hydrogenpermselective SiO2 membrane formed in pores of alumina support tube by chemical vapor deposition with tetraethyl orthosilicate. Ind. Eng. Chem. Res. 33, 2096 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Salimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salimi, M., Pirouzfar, V. Synthesis of a novel nano-ceramic membrane for hydrogen separation and purification. J Aust Ceram Soc 54, 271–277 (2018). https://doi.org/10.1007/s41779-017-0151-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-017-0151-6

Keywords

Navigation