Skip to main content
Log in

Quantitative analysis of bubble size and electrodes gap at different dielectric conditions in powder mixed EDM process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Powder mixed EDM is getting popularity due to its improved machining efficiency. The properties of powder particles play an important role in influencing the process. Therefore, the present work is focused on the phenomenon of electrical discharge machining (EDM) process for different dielectric conditions. Experiments on EDM have been performed using plain deionized (DI) water, nonconductive Al2O3 powder mixed DI water, and conductive Al powder mixed DI water as the dielectric. The experimental result shows that the conductive powder mixed EDM process is more stable and is able to generate better surface topography compared to other processes. To explicate the observation, sparking behavior, bubble formation, and interelectrode gap (IEG) for the different dielectric conditions have been investigated using high-speed camera. The average interelectrode gap was measured as 0.05 mm, 0.1015 mm, and 0.1392 mm in conventional EDM, nonconductive alumina powder mixed EDM, and conductive aluminum powder mixed EDM process, respectively. Similarly, mean sizes of bubble diameter in conventional EDM, alumina powder mixed EDM, and aluminum powder mixed EDM are observed as 0.1583 mm, 0.17789 mm, and 0.20621 mm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Marashi H, Jafarlou DM, Sarhan AAD, Hamdi M (2016) State of the art in powder mixed dielectric for EDM applications. Precis Eng 46:11–33. https://doi.org/10.1016/j.precisioneng.2016.05.010

    Article  Google Scholar 

  2. Jameson EC (2001) Electrical discharge machining. Society of Manufacturing Engineers, Dearborn, MI

    Google Scholar 

  3. Jahan MP, Rahman M, Wong YS (2011) A review on the conventional and micro-electrodischarge machining of tungsten carbide. Int J Mach Tools Manuf 51:837–858

    Article  Google Scholar 

  4. Kozak J, Rozenek M, Dabrowski L (2003) Study of electrical discharge machining using powder-suspended working media. Proc Inst Mech Eng Part B J Eng Manuf 217:1597–1602. https://doi.org/10.1243/095440503771909971

    Article  Google Scholar 

  5. Zhao WS, Meng QG, Wang ZL (2002) The application of research on powder mixed EDM in rough machining. J Mater Process Technol 129:30–33. https://doi.org/10.1016/S0924-0136(02)00570-8

    Article  Google Scholar 

  6. Abbas NM, Solomon DG, Bahari MF (2007) A review on current research trends in electrical discharge machining (EDM). Int J Mach Tools Manuf 47:1214–1228. https://doi.org/10.1016/j.ijmachtools.2006.08.026

    Article  Google Scholar 

  7. Mu X, Zhou M, Ye Q (2019) Improving surface integrity and surface roughness by forming multi-discharging channels from one pulse in EDM. Int J Adv Manuf Technol 102:3181–3195

    Article  Google Scholar 

  8. Chow H-M, Yang L-D, Lin C-T, Chen Y-F (2008) The use of SiC powder in water as dielectric for micro-slit EDM machining. J Mater Process Technol 195:160–170

    Article  Google Scholar 

  9. Bhattacharya A, Batish A, Singh G, Singla VK (2012) Optimal parameter settings for rough and finish machining of die steels in powder-mixed EDM. Int J Adv Manuf Technol 61:537–548

    Article  Google Scholar 

  10. Peças P, Henriques E (2008) Effect of the powder concentration and dielectric flow in the surface morphology in electrical discharge machining with powder-mixed dielectric (PMD-EDM). Int J Adv Manuf Technol 37:1120–1132

    Article  Google Scholar 

  11. Jahan MP, Rahman M, Wong YS (2011) Study on the nano-powder-mixed sinking and milling micro-EDM of WC-co. Int J Adv Manuf Technol 53:167–180. https://doi.org/10.1007/s00170-010-2826-9

    Article  Google Scholar 

  12. Mohanty S, Kumar V, Das AK, Dixit AR (2019) Surface modification of Ti-alloy by micro-electrical discharge process using tungsten disulphide powder suspension. J Manuf Process 37:28–41

    Article  Google Scholar 

  13. Kumar A, Mandal A, Dixit AR, et al Comparison in the performance of EDM and NPMEDM using Al 2 O 3 nanopowder as an impurity in DI water dielectric. Int J Adv Manuf Technol 1–13

  14. Tzeng Y-F, Lee C-Y (2001) Effects of powder characteristics on electrodischarge machining efficiency. Int J Adv Manuf Technol 17:586–592

    Article  Google Scholar 

  15. Kumar A, Mandal A, Dixit AR, Das AK (2018) Performance evaluation of Al2O3nano powder mixed dielectric for electric discharge machining of Inconel 825. Mater Manuf Process 33:986–995. https://doi.org/10.1080/10426914.2017.1376081

    Article  Google Scholar 

  16. Kumar S, Mandal A, Dixit AR (2018) Investigation of powder mixed EDM process parameters for machining Inconel alloy using response surface methodology. Mater Today Proc 5:6183–6188

    Article  Google Scholar 

  17. Kung K-Y, Horng J-T, Chiang K-T (2009) Material removal rate and electrode wear ratio study on the powder mixed electrical discharge machining of cobalt-bonded tungsten carbide. Int J Adv Manuf Technol 40:95–104

    Article  Google Scholar 

  18. Luzia CAO, Laurindo CAH, Soares PC, Torres RD, Mendes LA, Amorim FL (2019) Recast layer mechanical properties of tool steel after electrical discharge machining with silicon powder in the dielectric. Int J Adv Manuf Technol 103(1–4):15–28

    Article  Google Scholar 

  19. Tang L, Ji Y, Ren L, Zhai KG, Huang TQ, Fan QM, Zhang JJ, Liu J (2019) Thermo-electrical coupling simulation of powder mixed EDM SiC/Al functionally graded materials. Int J Adv Manuf Technol 105:2615–2628. https://doi.org/10.1007/s00170-019-04445-z

    Article  Google Scholar 

  20. Kansal HK, Singh S, Kumar P (2007) Technology and research developments in powder mixed electric discharge machining (PMEDM). J Mater Process Technol 184:32–41. https://doi.org/10.1016/j.jmatprotec.2006.10.046

    Article  Google Scholar 

  21. Jeswani ML (1981) Effect of the addition of graphite powder to kerosene used as the dielectric fluid in electrical discharge machining. Wear 70:133–139. https://doi.org/10.1016/0043-1648(81)90148-4

    Article  Google Scholar 

  22. Sahu DR, Mandal A (2020) Critical analysis of surface integrity parameters and dimensional accuracy in powder-mixed EDM. Mater Manuf Process 00:1–12. https://doi.org/10.1080/10426914.2020.1718695

    Article  Google Scholar 

  23. Prihandana GS, Mahardika M, Hamdi M et al (2009) Effect of micro-powder suspension and ultrasonic vibration of dielectric fluid in micro-EDM processes-Taguchi approach. Int J Mach Tools Manuf 49:1035–1041. https://doi.org/10.1016/j.ijmachtools.2009.06.014

    Article  Google Scholar 

  24. Prihandana GS, Mahardika M, Hamdi M, Wong YS, Miki N, Mitsui K (2013) Study of workpiece vibration in powder-suspended dielectric fluid in micro-EDM processes. Int J Precis Eng Manuf 14:1817–1822. https://doi.org/10.1007/s12541-013-0243-3

    Article  Google Scholar 

  25. Wong YS, Lim LC, Rahuman I, Tee WM (1998) Near-mirror-finish phenomenon in EDM using powder-mixed dielectric. J Mater Process Technol 79:30–40

    Article  Google Scholar 

  26. Kumar H (2015) Development of mirror like surface characteristics using nano powder mixed electric discharge machining (NPMEDM). Int J Adv Manuf Technol 76:105–113

    Article  Google Scholar 

  27. Takezawa, H., Kobayashi, D., Asano, T., Mohri N (2008) A study on single discharge machining with low melting temperature alloy (12th report) relationship between bubble shape and removal volume of discharge crater,. Proc Spring Meet Japan Soc Precis Eng . 373–374

  28. Takezawa, H., Kokubo, H., Mohri, N., Horio, K., Yanagida, D., Saito N (2007) A study on single discharge machining with low melting temperature alloy. Proc 15th Int Symp Electromachining 69–73

  29. YOSHIDA M, KUNIEDA M (1996) Study on the distribution of scattered debris generated by a single pulse discharge in EDM process. J Japan Soc Electr Mach Eng 30:27–36

    Google Scholar 

  30. Hayakawa S, Kusafuka Y, Itoigawa F, Nakamura T (2016) Observation of material removal from discharge spot in electrical discharge machining. Procedia CIRP 42:12–17

    Article  Google Scholar 

  31. Escobar AM, de Lange DF, Medellín Castillo HI (2020) Simplified plasma channel formation model for the electrical discharge machining process. Int J Adv Manuf Technol 106:143–153. https://doi.org/10.1007/s00170-019-04593-2

    Article  Google Scholar 

  32. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66

    Article  Google Scholar 

  33. Koyano T, Suzuki S, Hosokawa A, Furumoto T (2016) Study on the effect of external hydrostatic pressure on electrical discharge machining. Procedia CIRP 42:46–50. https://doi.org/10.1016/j.procir.2016.02.184

    Article  Google Scholar 

  34. Hogg RV, Tanis EA, Zimmerman DL (1977) Probability and statistical inference, vol 993. Macmillan, New York

    MATH  Google Scholar 

  35. Wang J, Han F, Cheng G, Zhao F (2012) Debris and bubble movements during electrical discharge machining. Int J Mach Tools Manuf 58:11–18. https://doi.org/10.1016/j.ijmachtools.2012.02.004

    Article  Google Scholar 

  36. Kansal HK, Singh S, Kumar P (2005) Parametric optimization of powder mixed electrical discharge machining by response surface methodology. J Mater Process Technol 169:427–436. https://doi.org/10.1016/j.jmatprotec.2005.03.028

    Article  Google Scholar 

  37. Janardhan V, Samuel GL (2010) Pulse train data analysis to investigate the effect of machining parameters on the performance of wire electro discharge turning (WEDT) process. Int J Mach Tools Manuf 50:775–788

    Article  Google Scholar 

  38. Yoshida M, Kunieda M (1998) Study on the distribution of scattered debris generated by a single pulse discharge in EDM process. Int J Electr Mach 3:39–46

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitava Mandal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Mandal, A., Dixit, A.R. et al. Quantitative analysis of bubble size and electrodes gap at different dielectric conditions in powder mixed EDM process. Int J Adv Manuf Technol 107, 3065–3075 (2020). https://doi.org/10.1007/s00170-020-05189-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05189-x

Keywords

Navigation