Skip to main content
Log in

Surface Integrity Enhancement of Incoloy 825 During Electric Discharge Machining

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

The aim of the current research work is to enhance the surface integrity of EDMed (electro-discharge machined) Incoloy 825 by suspending graphite powder particles in dielectric during electro-discharge machining (EDM). For this purpose, a specially designed and fabricated re-circulation dielectric tank was integrated with the existing EDM setup. The effect of three process variables, i.e., peak current, pulse-on time, and duty cycle was studied on EDM characteristics such as material removal rate, surface roughness (Ra), radial overcut, surface microhardness, microhardness in sub-surface regions, recast layer, phase changes and residual stress. Results showed that the machining rate increased up to 23% using powder-mixed EDM compared to conventional EDM. Significant reduction in surface roughness, white layer thickness, surface cracks and residual stress was observed while machining with graphite mixed dielectric. The addition of powder resulted in the formation of carbides and other alloy compounds on the machined surface which enhances the microhardness of surface and subsurface region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Ip :

Peak current

Ton :

Pulse on time

Tau :

Duty cycle

EDM:

Electric discharge machining

PMEDM:

Powder-mixed EDM

SEM:

Scanning electron microscopy

XRD:

X-ray diffraction

References

  1. G. Kibria, B. Bhattacharyya, J.P. Dvim. Non-traditional Micromachining Processes (J. P. Davim (ed.)). (Springer, 2017). https://doi.org/https://doi.org/10.1007/978-3-319-52009-4

  2. K. Furutani, A. Saneto, H. Takezawa, N. Mohri, H. Miyake, Accretion of titanium carbide by electrical discharge machining with powder suspended in working fluid. Precis. Eng. 25(2), 138–144 (2001). https://doi.org/10.1016/S0141-6359(00)00068-4

    Article  Google Scholar 

  3. Y.F. Luo, The dependence of interspace discharge transitivity upon the gap debris in precision electrodischarge machining. J. Mater. Process. Technol. 68(2), 121–131 (1997). https://doi.org/10.1016/S0924-0136(96)00019-2

    Article  Google Scholar 

  4. Y.F. Tzeng, F.C. Chen, A simple approach for robust design of high-speed electrical-discharge machining technology. Int. J. Mach. Tools Manuf 43(3), 217–227 (2003). https://doi.org/10.1016/S0890-6955(02)00261-4

    Article  Google Scholar 

  5. W.S. Zhao, Q.G. Meng, Z.L. Wang, The application of research on powder mixed EDM in rough machining. J. Mater. Process. Technol. 129(1–3), 30–33 (2002). https://doi.org/10.1016/S0924-0136(02)00570-8

    Article  Google Scholar 

  6. B. Kuriachen, J. Mathew, Effect of powder mixed dielectric on material removal and surface modification in micro electric discharge machining of Ti–6Al–4V. Mater. Manuf. Process. 31(4), 439–446 (2016)

    Article  Google Scholar 

  7. G. Talla, S. Gangopadhayay, C. Biswas, State of the art in powder-mixed electric discharge machining: a review. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 231(14), 2511–2526 (2017). https://doi.org/10.1177/0954405416634265

    Article  Google Scholar 

  8. G. Talla, S. Gangopadhyay, N.B. Kona, Experimental investigation and optimization during the fabrication of arrayed structures using reverse EDM. Mater. Manuf. Process. 32(9), 1–12 (2017). https://doi.org/10.1080/10426914.2016.1221085

    Article  Google Scholar 

  9. H.K. Kansal, S. Singh, P. Kumar, Effect of silicon powder mixed EDM on machining rate of AISI D2 die steel. J. Manuf. Process. 9(1), 13–22 (2007). https://doi.org/10.1016/S1526-6125(07)70104-4

    Article  Google Scholar 

  10. H.K. Kansal, S. Singh, P. Kumar, Application of Taguchi method for optimisation of powder mixed electrical discharge machining. Int. J. Manuf. Technol. Manag. 7(2–4), 329 (2005)

    Article  Google Scholar 

  11. K.Y. Kung, J.T. Horng, K.T. Chiang, Material removal rate and electrode wear ratio study on the powder mixed electrical discharge machining of cobalt-bonded tungsten carbide. Int. J. Adv. Manuf. Technol. 40(1–2), 95–104 (2009). https://doi.org/10.1007/s00170-007-1307-2

    Article  Google Scholar 

  12. B.H. Yan, Y.C. Lin, F.Y. Huang, C. Wang, Surface modification of SKD 61 during EDM with metal powder in the dielectric. Mater. Trans. 42(12), 2597–2604 (2001). https://doi.org/10.2320/matertrans.42.2597

    Article  Google Scholar 

  13. C. Cogun, B. Ozerkan, T. Karacay, An experimental investigation on the effect of powder mixed dielectric on machining performance in electric discharge machining. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 220(7), 1035–1050 (2006). https://doi.org/10.1243/09544054JEM320

    Article  Google Scholar 

  14. Y.F. Tzeng, C.Y. Lee, Effects of powder characteristics on electrodischarge machining efficiency. Int. J. Adv. Manuf. Technol. 17(8), 586–592 (2001). https://doi.org/10.1007/s001700170142

    Article  Google Scholar 

  15. B.V. Dharmendra, S.P. Kodali, B. Nageswara Rao, A simple and reliable Taguchi approach for multi-objective optimization to identify optimal process parameters in nano-powder-mixed electrical discharge machining of INCONEL800 with copper electrode. Heliyon 5(8), e02326 (2019). https://doi.org/10.1016/j.heliyon.2019.e02326

    Article  Google Scholar 

  16. S.H. Kang, D.E. Kim, Investigation of EDM characteristics of nickel-based heat resistant alloy. KSME Int. J. 17(10), 1475–1484 (2003). https://doi.org/10.1007/BF02982327

    Article  Google Scholar 

  17. V. Kumar, N. Beri, A. Kumar, P. Singh, Some studies on electric discharge machining of hastelloy using powder metallurgy electrode. Int. J. Adv. Eng. Technol. 1(2), 16–27 (2010)

    Google Scholar 

  18. A. Mohanty, G. Talla, S. Gangopadhyay, Experimental investigation and analysis of EDM characteristics of Inconel 825. Mater. Manuf. Process. 29(5), 540–549 (2014). https://doi.org/10.1080/10426914.2014.901536

    Article  Google Scholar 

  19. S.K. Sahu, B. Dey, S. Datta, Selection of appropriate powder-mixed dielectric media (kerosene and used transformer oil) for desired EDM performance on Inconel 718 super alloys. Mater. Today: Proc. 18, 4111–4119 (2019). https://doi.org/10.1016/j.matpr.2019.07.355

    Article  Google Scholar 

  20. F. Klocke, D. Lung, G. Antonoglou, D. Thomaidis, The effects of powder suspended dielectrics on the thermal influenced zone by electrodischarge machining with small discharge energies. J. Mater. Process. Technol. 149(1–3), 191–197 (2004). https://doi.org/10.1016/j.jmatprotec.2003.10.036

    Article  Google Scholar 

  21. P. Singh, A. Kumar, N. Beri, V. Kumar, Influence of electrical parameters in powder mixed elecric discharge machining (PMEDM) of hastelloy. J. Eng. Res. Stud. 1(2), 93–105 (2010)

    Google Scholar 

  22. A. Kumar, S. Maheshwari, C. Sharma, N. Beri, Analysis of machining characteristics in additive mixed electric discharge machining of nickel-based super alloy Inconel 718. Mater. Manuf. Process. 26(8), 1011–1018 (2011). https://doi.org/10.1080/10426914.2010.527415

    Article  Google Scholar 

  23. G.S. Prihandana, T. Sriani, M. Mahardika, M. Hamdi, N. Miki, Y.S. Wong, K. Mitsui, Application of powder suspended in dielectric fluid for fine finish micro-EDM of Inconel 718. Int. J. Adv. Manuf. Technol. 75(1–4), 599–613 (2014). https://doi.org/10.1007/s00170-014-6145-4

    Article  Google Scholar 

  24. S. Prabhu, B.K. Vinayagam, AFM surface investigation of Inconel 825 with multi wall carbon nano tube in electrical discharge machining process using Taguchi analysis. Arch. Civ. Mech. Eng. 11(1), 149–170 (2011). https://doi.org/10.1016/S1644-9665(12)60180-0

    Article  Google Scholar 

  25. G. Talla, S. Gangopadhyay, C. Biswas, Effect of impregnated powder materials on surface integrity aspects of Inconel 625 during electrical discharge machining. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 232(7), 1259–1272 (2018). https://doi.org/10.1177/0954405416666904

    Article  Google Scholar 

  26. G. Talla, S. Gangopadhyay, C.K. Biswas, Effect of powder-suspended dielectric on the EDM characteristics of Inconel 625. J. Mater. Eng. Perform. 25(2), 704–717 (2016). https://doi.org/10.1007/s11665-015-1835-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangadharudu Talla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talla, G., Varughese, R.T. & Gangopadhyay, S. Surface Integrity Enhancement of Incoloy 825 During Electric Discharge Machining. J. Inst. Eng. India Ser. C 102, 789–798 (2021). https://doi.org/10.1007/s40032-021-00675-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-021-00675-x

Keywords

Navigation