Skip to main content
Log in

An optimization method for thermal behavior of high-speed spindle of gear form grinding machine

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In order to minimize the thermal elongation of high-speed spindle of gear form grinding machine, an optimization method for thermal behavior is proposed in this paper. The influence of constrained modes of bearings on the positional accuracy of the spindle is discussed, and the optimum constrained mode is obtained. An objective function of thermal contact resistance is established according to the semi-empirical formula to optimize the routes of heat transfer in the spindle assemblies through the constrained optimization method. The simulation and experimental results show that the temperature rise of the grinding wheel shaft and its associated components are all very small, and the thermal elongation of the grinding wheel shaft is about zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A :

contact area (m2)

E :

elasticity modulus (GPa)

H :

hardness

h :

heat transfer coefficient (W/(m2·K))

k :

tuned average thermal conductivity (W/(m·K))

L :

length of each component (m)

M :

friction torque (N mm)

N :

speed (rpm)

p :

contact pressure (MPa)

Q :

heat (W)

q :

heat flux (W/m2)

R λ :

thermal resistance (K/W)

R c :

thermal contact resistance (m2 K/W)

r :

radius (mm)

T cc :

contact thermal conductivity (W/(m2·K))

\( \varDelta \overline{T} \) :

average temperature rise (°C)

t w :

temperature (°C)

vs :

linear velocity (m/s)

α T :

thermal expansion coefficient (1/°C)

δ :

thermal elongation (m)

ε :

interference amount (mm)

σ :

root-mean-square value of surface roughness

References

  1. Creighton E, Honegger A, Tulsian A et al (2010) Analysis of thermal errors in a high-speed micro-milling spindle. Int J Mach Tools Manuf 50(4):386–393

    Article  Google Scholar 

  2. Okafor AC, Ertekin YM (2000) Derivation of machine tool error models and error compensation procedure for three axes vertical machining center using rigid body kinematics. Int J Mach Tool Manu 40(8):1199–1213

    Article  Google Scholar 

  3. Fan KG, Yang JG, Yang LY (2014) Unified error model based spatial error compensation for four types of CNC machining center: part II-unified model based spatial error compensation. Mech Syst Signal Pr 49:63–76

    Article  Google Scholar 

  4. Jiang H, Fan KG, Yang JG (2014) An improved method for thermally induced positioning errors measurement, modeling, and compensation. Int J Adv Manuf Technol 75:1279–1289

    Article  Google Scholar 

  5. Lu Y, Islam MN (2012) A new approach to thermally induced volumetric error compensation. Int J Adv Manuf Technol 62(9–12):1071–1085

    Article  Google Scholar 

  6. Zhang Y, Yang J, Xiang S et al (2013) Volumetric error and compensation considering thermal effect on five-axis machine tools. Proc Inst Mech Eng C J Mech Eng Sci 227(5):1102–1115

    Article  Google Scholar 

  7. Li X (2001) Real-time prediction of workpiece errors for a CNC turning center, part 2: modeling and estimation of thermally induced errors. Int J Adv Manuf Technol 17(9):654–658

    Article  Google Scholar 

  8. Guo Q, Yang J, Wu H (2010) Application of ACO-BPN to thermal error modeling of NC machine tool. Int J Adv Manuf Technol 50(5):667–675

    Article  Google Scholar 

  9. Xia CH, Fu JZ, Lai JT, Yao XH, Chen ZC (2015) Conjugate heat transfer in fractal tree-like channels network heat sink for high-speed motorized spindle cooling. Appl Therm Eng 90:1032–1042

    Article  Google Scholar 

  10. He Q, Shen Y, Ren FZ, Li LL, Alex AV (2017) Numerical simulation and experimental study of the air-cooled motorized spindle. P I Mech Eng C-J Mec 231(12):2357–2369

    Article  Google Scholar 

  11. Liu T, Gao WG, Tian YL, Zhang DW, Zhang YF, Chang WF (2017) Power matching based dissipation strategy onto spindle heat generations. Appl Therm Eng 113:499–507

    Article  Google Scholar 

  12. Fajing L, Jianmin G, Xiaojun S, Feng L, Rui T (2017) Investigation on heat transfer performance of loop thermosyphon for inner cooling of motorized spindle. J Xi'an Jiaotong Univ 51(7):90–97

    Google Scholar 

  13. Mori M, Mizuguchi H, Fujishima M et al (2009) Design optimization and development of CNC lathe headstock to minimize thermal deformation. CIRP Ann-Manuf Technol 58(1):331–334

    Article  Google Scholar 

  14. Ge Z, Ding X (2018) Design of thermal error control system for high-speed motorized spindle based on thermal contraction of CFRP. Int J Mach Tool Manu 125:99–111

    Article  Google Scholar 

  15. Sevinchan E, Dincer I, Lang H (2019) Investigation of heat transfer performance of various insulating materials for robots. Int J Heat Mass Transf 131:907–919

    Article  Google Scholar 

  16. Xie T, He Y-L, Tong Z-X (2016) Analysis of insulation performance of multilayer thermal insulation doped with phase change material. Int J Heat Mass Transf 102:934–943

    Article  Google Scholar 

  17. Liua J, Maa C, Wanga S, Wanga S, Yanga B (2019) Thermal contact resistance between bearing inner ring and shaft journal. Int J Therm Sci 138:521–535

    Article  Google Scholar 

  18. Wang S, Xie T, Xie H (2018) Experimental study of the effects of the thermal contact resistance on the performance of thermoelectric generator. Appl Therm Eng 130:847–853

    Article  Google Scholar 

  19. Song S, Yovanovich MM (1988) Relative contact pressure- dependence on surface roughness and Vickers microhardness. J Thermophys Heat Transf 2(1):43–47

    Article  Google Scholar 

  20. Wang H, Xiong Y, He G (2015) Grinding force model of the grinding helical gear by using forming method. J Mech Transm 04:49–52

    Google Scholar 

  21. Fan K (2017) Research on the machine tool’s temperature spectrum and its application in a gear form grinding machine. Int J Adv Manuf Technol 90:3841–3850

    Article  Google Scholar 

Download references

Funding

This paper is sponsored by the important National Science & Technology Specific Projects of “Top Grade CNC Machine Tools and Basic Manufacturing Equipment” (No. 2011ZX04003-031); the “Technology of on-line monitoring system for thermal characteristics of NC machine tools” (No. H2019304021); and the “Project funded of Shanghai science committee- Precision technology and its application for five-axis machine tool based on the real-time compensation” (NO. J16022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiguo Fan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, K., Gao, R., Zhou, H. et al. An optimization method for thermal behavior of high-speed spindle of gear form grinding machine. Int J Adv Manuf Technol 107, 959–970 (2020). https://doi.org/10.1007/s00170-020-05095-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05095-2

Keywords

Navigation