Skip to main content
Log in

Thermal characteristics testing and thermal error modeling on a worm gear grinding machine considering cutting fluid thermal effect

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The coolant absorbing cutting heat has strong influence on thermal behaviors for high precision machine tool using flood cooling technique. However, the majority of applied thermal error compensation models are without considering cutting fluid thermal effect, which results in poor simulation accuracy of thermal deformation. This paper experimentally investigated the effect of coolant temperature on the thermal characteristics of a worm gear precision grinding machine. Experiments were carried out under three conditions: no-load with coolant, no-load with heated coolant, and load test. Moreover, a real-time thermal error compensation model was theoretically developed and validated based on the experimental data involving the cutting fluid thermal effect. The results show that the temperature distribution of the machine tool was more uniform and the temperature gradient was decreased when the grinding heat was partially considered using heated coolant, which indicates that coolant can positively affect the thermal behavior if it is controlled to flow correctly. The thermal error compensation model was built based on the optimal four temperature variables and with a high accurate prediction and robustness. For the no-load operating conditions, the maximum absolute errors and mean absolute errors are 2.7 μm and 1.5 μm respectively. For the load operating conditions, the prediction accuracy of the model built by no-load measuring data is also greatly improved because the grinding heat is partially considered by heated coolant in the no-load test. And the maximum prediction error is 13.0% when the influence of the feed drive system adjustment is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang JG, Ren YQ, Liu GL, Zhao HT, Dou XL, Chen WZ, He SW (2005) Testing, variable selecting and modeling of thermal errors on an index-g200 turning center. Int J Adv Manuf Technol 26(7-8):814–818. https://doi.org/10.1007/s00170-003-1908-3

    Article  Google Scholar 

  2. Bryan JB (1990) International status of thermal error research. Annals Cirp CIRP Annals—Manufacturing Technology 39(2):645–656. https://doi.org/10.1016/S0007-8506(07)63001-7

    Article  Google Scholar 

  3. Li Y, Zhao W, Lan S, Ni J, Wu W, Lu B (2015) A review on spindle thermal error compensation in machine tools. Int J Mach Tool Manu 95:20–38. https://doi.org/10.1016/j.ijmachtools.2015.04.008

    Article  Google Scholar 

  4. Aguirre G, Pérez de Nanclares A & Urreta H (2014). Thermal error compensation for large heavy duty milling-boring machines. Proceedings of the 29th annual meeting of the American Society for Precision Engineering, 57–62. http://www.aspe.net/publications/Short%20Abstracts%2014A/4085.pdf

  5. Brecher C, Wissmann A (2011) Compensation of thermo-dependent machine tool deformations due to spindle load: investigation of the optimal transfer function in consideration of rough machining. Prod Eng 5(5):565–574. https://doi.org/10.1007/s11740-011-0311-4

    Article  Google Scholar 

  6. Liang R, Zhang HH, Yang Q (2012) The thermal error optimization models for CNC machine tools. Int J Adv Manuf Technol 63(9-12):1167–1176. https://doi.org/10.1007/s00170-012-3978-6

    Article  Google Scholar 

  7. Chen JS (1996) A study of thermally induced machine tool errors in real cutting conditions. Int J Mach Tool Manu 36(12):1401–1411. https://doi.org/10.1016/0890-6955(95)00096-8

    Article  Google Scholar 

  8. Horejš O, Mareš M, Hornych J (2014) A general approach to thermal error modelling of machine tools. In: Machines et Usinage à Grande Vitesse (MUGV). Clermont Ferrand, France

    Google Scholar 

  9. Martin M, Otakar H (2017) Modelling of cutting process impact on machine tool thermal behaviour based on experimental data. Procedia CIRP 58:152–157. https://doi.org/10.1016/j.procir.2017.03.208

    Article  Google Scholar 

  10. Brecher C, Hirsch P, Weck M (2004) Compensation of thermo-elastic machine tool deformation based on control internal data. CIRP Ann Manuf Technol 53(1):299–304. https://doi.org/10.1016/S0007-8506(07)60702-1

    Article  Google Scholar 

  11. Vyroubal J (2012) Compensation of machine tool thermal deformation in spindle axis direction based on decomposition method. Precis Eng 36(1):121–127. https://doi.org/10.1016/j.precisioneng.2011.07.013

    Article  Google Scholar 

  12. Lee JH, Yang SH (2002) Statistical optimization and assessment of a thermal error model for CNC machine tools. Int J Mach Tool Manu 42(1):147–155. https://doi.org/10.1016/s0890-6955(01)00110-9

    Article  Google Scholar 

  13. Du ZC, Yang JG, Yao ZQ, Xue BY (2002) Modeling approach of regression orthogonal experiment design for the thermal error compensation of a CNC turning center. J Mater Process Technol 129(1-3):619–623. https://doi.org/10.1016/s0924-0136(02)00668-4

    Article  Google Scholar 

  14. Ramesh R, Mannan MA, Poo AN (2002) Support vector machines model for classification of thermal error in machine tools. Int J Adv Manuf Technol 20(2):114–120. https://doi.org/10.1007/s001700200132

    Article  Google Scholar 

  15. Lin WLW & Fu JFJ (2010). Support vector machine and neural network united system for NC machine tool thermal error modeling. Sixth International Conference on Natural Computation. IEEE, 4305–4309 https://doi.org/10.1109/ICNC.2010.5583620.

  16. Miao EM, Gong YY, Niu PC, Ji CZ, Chen HD (2013) Robustness of thermal error compensation modeling models of cnc machine tools. Int J Adv Manuf Technol 69(9-12):2593–2603. https://doi.org/10.1007/s00170-013-5229-x

    Article  Google Scholar 

  17. Ramesh R, Mannan MA, Poo AN (2003) Thermal error measurement and modelling in machine tools. Part II. Hybrid Bayesian network—support vector machine model. Int J Mach Tool Manu 43(4):405–419. https://doi.org/10.1016/s0890-6955(02)00264-x

    Article  Google Scholar 

  18. Brinksmeier E, Meyer D, Huesmann-Cordes AG, Herrmann C (2015) Metalworking fluids—mechanisms and performance. CIRP Annals—Manufacturing Technology 64(2):605–628. https://doi.org/10.1016/j.cirp.2015.05.003

    Article  Google Scholar 

  19. S X, Z K, W W, F L, G J (2018) A thermal characteristic analytic model considering cutting fluid thermal effect for gear grinding machine under load. Int J Adv Manuf Technol 99(5-8):1755–1976. https://doi.org/10.1007/s00170-018-2562-0

    Article  Google Scholar 

  20. F L-j, S X-j, Z K, G J-m (2018) Experimental study on the effect of coolant on the thermal characteristics of gear grinding machine under load. Int J Mechat Manuf Syst 11(1):53–66. https://doi.org/10.1504/IJMMS.2018.091177

    Google Scholar 

  21. Mayr J, Gebhardt M, Massow BB, Weikert S, Wegener K (2014) Cutting fluid influence on thermal behavior of 5-axis machine tools. Procedia CIRP 14:395–400. https://doi.org/10.1016/j.procir.2014.03.085

    Article  Google Scholar 

  22. Chen Z, di R (2004) The researching status analysis about the identification of the thermal key point of the machine tool. Modular Mach Tool Autom Manuf Tech 2:33–34. https://doi.org/10.3969/j.issn.1001-2265.2004.02.023

    Google Scholar 

  23. Yang J, Yuan J, Ni J (1999) Thermal error mode analysis and robust modeling for error compensation on a cnc turning center. Int J Mach Tool Manu 39(9):1367–1381. https://doi.org/10.1016/S0890-6955(99)00008-5

    Article  Google Scholar 

  24. Weck M, McKeown P, Bonse R, Herbst U (1995) Reduction and compensation of thermal errors in machine tools. CIRP Ann—Manuf Technol 44(2):589–598. https://doi.org/10.1016/s0007-8506(07)60506-x

    Article  Google Scholar 

  25. Lo CH, Yuan J, Ni J (1999) Optimal temperature variable selection by grouping approach for thermal error modeling and compensation. Int J Mach Tool Manu 39(9):1383–1396. https://doi.org/10.1016/S0890-6955(99)00009-7

    Article  Google Scholar 

  26. Li YX, Yang JG, Gelvis T, Li YY (2008) Optimization of measuring points for machine tool thermal error based on grey system theory. Int J Adv Manuf Technol 35(7-8):745–750. https://doi.org/10.1007/s00170-006-0751-8

    Article  Google Scholar 

  27. Liu H, Miao EM, Wei XY, Zhuang XD (2017) Robust modeling method for thermal error of CNC machine tools based on ridge regression algorithm. Int J Mach Tool Manu 113:35–48. https://doi.org/10.1016/j.ijmachtools.2016.11.001

    Article  Google Scholar 

  28. Ma Shuwen (2007). Study on heat characteristics and thermal error compensation of NC machine tools. Doctoral dissertation. Southwest Jiaotong University, 55–56. http://cdmd.cnki.com.cn/Article/CDMD-10613-2007118201.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Shi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Wang, W., Mu, Y. et al. Thermal characteristics testing and thermal error modeling on a worm gear grinding machine considering cutting fluid thermal effect. Int J Adv Manuf Technol 103, 4317–4329 (2019). https://doi.org/10.1007/s00170-019-03650-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03650-0

Keywords

Navigation