Skip to main content

Advertisement

Log in

An optimized convolutional neural network for chatter detection in the milling of thin-walled parts

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Chatter is a self-excited vibration that frequently occurs in thin-walled parts milling, which has become a major limitation to productivity and quality. Additionally, convolutional neural network (CNN) has been widely used in detection and classification, but the accuracy and convergence are affected by the initial weight and hyperparameters. Therefore, based on CNN, a method of chatter detection for the milling of thin-walled parts is proposed, which is realized by recognizing the image of the machined surface. First, aiming at the challenges of neural networks in which the weight is randomly initialized, a weight initialization method is proposed based on an improved magnetic bacteria optimization algorithm. The optimal magnetosome of each generation is used to adjust the magnetic moment of the next generation so that the population approaches the optimal solution direction to search for the global optimal value. Second, an improved genetic algorithm is proposed to optimize the network structure and improve the optimization efficiency of hyperparameters. The tabu list and the hill climbing algorithm are introduced into the improved genetic algorithm to avoid repeatedly counting the fitness of the same point and solving the oscillation problem near the optimal solution. The experimental results show that the accuracy, the value of the Matthew correlation coefficient, and the F1 Score value of proposed CNN are 98.3%, 95.5%, and 98.8%, respectively. Compared with other algorithms, the proposed method, which has outstanding recognition performance, is competent in contactless chatter detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Aslan D, Altintas Y (2018) On-line chatter detection in mi-lling using drive motor current commands extracted from CNC. Int J Mach Tools Manuf 132:64–80. https://doi.org/10.1016/j.ijmachtools.2018.04.007

    Article  Google Scholar 

  2. Chen Y, Li H, Hou L, Wang J, Bu X (2018) An intelligent chatter detection method based on EEMD and feature sele-ction with multi-channel vibration signals. Measurement 127:356–365. https://doi.org/10.1016/j.measurement.2018.06.006

    Article  Google Scholar 

  3. Ye J, Feng P, Xu C, Ma Y, Huang S (2018) A novel appro-ach for chatter online monitoring using coefficient of variation in machining process. Int J Adv Manuf Technol 96(1):287–297. https://doi.org/10.1007/s00170-017-1544-y

    Article  Google Scholar 

  4. Yang Y, Zhang W-H, Ma Y-C, Wan M, Dang X-B (2019) An efficient decomposition-condensation method for chatter prediction in milling large-scale thin-walled structures. Mech Syst Sign Process 121:58–76. https://doi.org/10.1016/j.ymssp.2018.11.013

    Article  Google Scholar 

  5. Wu S, Li R, Liu X, Yang L, Zhu M (2016) Experimental study of thin wall milling chatter stability nonlinear criterion. Procedia CIRP 56:422–427. https://doi.org/10.1016/j.procir.2016.10.075

    Article  Google Scholar 

  6. Dong X, Zhang W (2017) Chatter identification in milling of the thin-walled part based on complexity index. Int J Adv Manuf Technol Technol 91(9):3327–3337. https://doi.org/10.1007/s00170-016-9912-6

    Article  Google Scholar 

  7. Yamato S, Hirano T, Yamada Y, Koike R, Kakinuma Y (2018) Sensor-less on-line chatter detection in turning process based on phase monitoring using power factor theory. Precis Eng 51:103–116. https://doi.org/10.1016/j.precisioneng.2017.07.017

    Article  Google Scholar 

  8. Fu Y, Zhang Y, Zhou H, Li D, Liu H, Qiao H, Wang X (2016) Timely online chatter detection in end milling process. Mech Syst Signal Process 75:668–688. https://doi.org/10.1016/j.ymssp.2016.01.003

    Article  Google Scholar 

  9. Yao Z, Mei D, Chen Z (2010) On-line chatter detection an-d identification based on wavelet and support vector mac-hine. J Mater Process Technol 210(5):713–719. https://doi.org/10.1016/j.jmatprotec.2009.11.007

    Article  Google Scholar 

  10. Sun H, Zhang X, Wang J (2016) Online machining chatter forecast based on improved local mean decomposition. Int J Adv Manuf Technol 84(5):1045–1056. https://doi.org/10.1007/s00170-015-7785-8

    Article  Google Scholar 

  11. Peng C, Wang L, Liao TW (2015) A new method for the prediction of chatter stability lobes based on dynamic cutting force simulation model and support vector machine. J Sound Vib 354:118–131. https://doi.org/10.1016/j.jsv.2015.06.011

    Article  Google Scholar 

  12. Grossi N, Sallese L, Scippa A, Campatelli G (2014) Chatter stability prediction in milling using speed-varying cutting force coefficients. Procedia CIRP 14:170–175. https://doi.org/10.1016/j.procir.2014.03.019

    Article  Google Scholar 

  13. Tangjitsitcharoen S, Saksri T, Ratanakuakangwan S (2015) Advance in chatter detection in ball end milling process by utilizing wavelet transform. J Intell Manuf 26(3):485–499. https://doi.org/10.1007/s10845-013-0805-3

    Article  Google Scholar 

  14. Zhang Z, Li H, Meng G, Tu X, Cheng C (2016) Chatter detection in milling process based on the energy entropy of VMD and WPD. Int J Mach Tools Manuf 108:106–112. https://doi.org/10.1016/j.ijmachtools.2016.06.002

    Article  Google Scholar 

  15. Shamarin NN, Filippov AV, Tarasov SY, Podgornyh OA, Filippova EO, Vorontsov AV (2018) Acoustic emission as method of chatter detection in cutting. AIP Conf Proceed 2051(1):020276. https://doi.org/10.1063/1.5083519

    Article  Google Scholar 

  16. Schmitz T (2015) The microphone feedback analogy for chatter in machining. Shock Vib 2015:5. https://doi.org/10.1155/2015/976819

    Article  Google Scholar 

  17. Cao H, Yue Y, Chen X, Zhang X (2017) Chatter detection in milling process based on synchro squeezing transform of sound signals. Int J Adv Manuf Technol 89(9):2747–2755. https://doi.org/10.1007/s00170-016-9660-7

    Article  Google Scholar 

  18. Sallese L, Grossi N, Scippa A, Campatelli G (2017) Investigation and correction of actual microphone response for chatter detection in milling operations. Meas Control 50(2):45–52. https://doi.org/10.1177/0020294017702285

    Article  Google Scholar 

  19. Potočnik P, Thaler T, Govekar E (2013) Multisensory chatter detection in band sawing. Proc CIRP 8:469–474. https://doi.org/10.1016/j.procir.2013.06.135

    Article  Google Scholar 

  20. Lamraoui M, Barakat M, Thomas M, Badaoui ME (2013) Chatter detection in milling machines by neural network classification and feature selection. J Vib Control 21(7):1251–1266. https://doi.org/10.1177/1077546313493919

    Article  Google Scholar 

  21. Szydłowski M, Powałka B (2012) Chatter detection algorithm based on machine vision. Int J Adv Manuf Technol 62(5):517–528. https://doi.org/10.1007/s00170-011-3816-2

    Article  Google Scholar 

  22. Lei N, Soshi M (2017) Vision-based system for chatter identification and process optimization in high-speed milling. Int J Adv Manuf Technol 89(9):2757–2769. https://doi.org/10.1007/s00170-016-9770-2

    Article  Google Scholar 

  23. Khalifa OO, Densibali A, Faris W (2006) Image processing for chatter identification in machining processes. Int J Adv Manuf Technol 31(5):443–449. https://doi.org/10.1007/s00170-005-0233-4

    Article  Google Scholar 

  24. Chen Y, Li H, Jing X, Hou L, Bu X (2019) Intelligent chatter detection using image features and support vector machine. Int J Adv Manuf Technol 102(5):1433–1442. https://doi.org/10.1007/s00170-018-3190-4

    Article  Google Scholar 

  25. Wang R, Kalnay E, Balachandran B (2019) Neural machine-based forecasting of chaotic dynamics. Nonlinear Dyn. https://doi.org/10.1007/s11071-019-05127-x

    Article  Google Scholar 

  26. Pan S, Duraisamy K (2018) Long-time predictive modeling of nonlinear dynamical systems using neural networks. Complexity 2018:26. https://doi.org/10.1155/2018/4801012

    Article  Google Scholar 

  27. Chaudhary S, Taran S, Bajaj V, Sengur A (2019) Convolutional neural network based approach towards motor imagery tasks EEG signals classification. IEEE Sens J 19(12):4494–4500. https://doi.org/10.1109/JSEN.2019.2899645

    Article  Google Scholar 

  28. Ma M, Liu L, Chen YA (2018) KM-Net Model Based on k-Means Weight Initialization for Images Classification. In: 2018 IEEE 20th International Conference on High Performance Computing and Communications, IEEE 16th International Conference on Smart City, IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), 28–30 June 2018. pp 1125–1128. https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00188

  29. Ijjina EP, Chalavadi KM (2016) Human action recognition using genetic algorithms and convolutional neural networks. Pattern Recogn 59:199–212. https://doi.org/10.1016/j.patcog.2016.01.012

    Article  Google Scholar 

  30. Zheng M, Tang W, Zhao X (2019) Hyperparameter optimization of neural network-driven spatial models accelerated using cyber-enabled high-performance computing. Int J Geogr Inf Sci 33(2):314–345. https://doi.org/10.1080/13658816.2018.1530355

    Article  Google Scholar 

  31. Zhang M, Li H, Lyu J, Ling SH, Su S (2019) Multi-level CNN for lung nodule classification with Gaussian process assisted hyperparameter optimization. arXiv e-prints:arXiv:1901.00276

  32. Wang Y, Zhang H, Zhang G (2019) cPSO-CNN: an efficient PSO-based algorithm for fine-tuning hyper-parameters of convolutional neural networks. Swarm Evol Comput 49:114–123. https://doi.org/10.1016/j.swevo.2019.06.002

    Article  Google Scholar 

  33. Long XH, Balachandran B (2007) Stability analysis for milling process. Nonlinear Dyn 49(3):349–359. https://doi.org/10.1007/s11071-006-9127-8

    Article  MATH  Google Scholar 

  34. Xinhua L, Balachandran B (2010) Stability of up-milling and down-milling operations with variable spindle speed. J Vib Control 16(7–8):1151–1168. https://doi.org/10.1177/1077546309341131

    Article  MathSciNet  MATH  Google Scholar 

  35. Wiercigroch M, Balachandran B (2001) Nonlinear dynamics of milling processes. Philos Trans Royal Soc London Ser A: Math Phys Eng Sci 359 (1781):793–819. https://doi.org/10.1098/rsta.2000.0755

    Article  Google Scholar 

  36. Mo H (2012) Research on magnetotactic bacteria optimization algorithm. In: 2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI), 18–20 Oct. 2012. pp 423–427. https://doi.org/10.1109/ICACI.2012.6463198

  37. Xia Y, Fu Z (2018) A tabu search algorithm for distribution network optimization with discrete split deliveries and soft time windows. Clust Comput 22:15447–15457. https://doi.org/10.1007/s10586-018-2635-8

    Article  Google Scholar 

  38. Droste S, Jansen T, Wegener I (2002) On the analysis of the (1+1) evolutionary algorithm. Theor Comput Sci 276(1):51–81. https://doi.org/10.1016/S0304-3975(01)00182-7

    Article  MathSciNet  MATH  Google Scholar 

  39. Chen J, Liu Z, Wang H, Núñez A, Han Z (2018) Automatic defect detection of fasteners on the catenary support device using deep convolutional neural network. IEEE Trans Instrum Meas 67(2):257–269. https://doi.org/10.1109/TIM.2017.2775345

    Article  Google Scholar 

Download references

Funding

This work is supported by the Chinese National Key Research and Development Program (2016YFC0802900), the National Natural Science Foundation of China (51605422), the Natural Science Foundation of Hebei Province (E2017203372, E2017203156), and the open fund for Jiangsu Key Laboratory of Advanced Manufacturing Technology (HGAMTL-1706).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenghe Wu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Zhuang, J., Guo, B. et al. An optimized convolutional neural network for chatter detection in the milling of thin-walled parts. Int J Adv Manuf Technol 106, 3881–3895 (2020). https://doi.org/10.1007/s00170-019-04899-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04899-1

Keywords

Navigation