Skip to main content
Log in

Friction stir lap welding of AA2024-T4 with drastically different thickness

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Friction stir lap welding is a promising technology to obtain high-strength joints of Al alloys in aviation and aerospace industries. Despite extensive studies performed on thin-wall structures, few works were conducted to join the plates with drastically different thickness, such as the joining of aircraft skins and panels. In this paper, 2.5-mm and 25-mm-thick AA2024-T4 plates were joined with a circumferential notches shape pin. The influence of pin length on joint features and mechanical properties was investigated. The pin improved the material flow behavior and stirred the materials violently, which were beneficial to reducing the interface migration and facilitating the joining of interfaces. The hook defects were eliminated. The failure load firstly increased with the pin length from 2.6 mm to 2.7 mm and then decreased when the pin length increased from 2.7 mm to 3.1 mm. The failure load reached 7.97 kN due to sufficient material intermixing with strong mechanical joining and large bearing area with metallurgical bonding. The selection of pin length should consider the deformation of thick plates, which acted as backing plates with lower elasticity modulus than typical backing plates made of steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mishra R, Ma Z (2005) Friction stir welding and processing. Mater Sci Eng R Reports 50:1–78. https://doi.org/10.1016/j.mser.2005.07.001

    Article  Google Scholar 

  2. Zhao Z, Yang X, Li S, Li D (2019) Interfacial bonding features of friction stir additive manufactured build for 2195-T8 aluminum-lithium alloy. J Manuf Process 38:396–410. https://doi.org/10.1016/j.jmapro.2019.01.042

    Article  Google Scholar 

  3. Lee C, Lee W, Kim J, Choi D, Yeon Y, Jung S (2008) Lap joint properties of FSWed dissimilar formed 5052 Al and 6061 Al alloys with different thickness. J Mater Sci 43:3296–3304. https://doi.org/10.1007/s10853-008-2525-1

    Article  Google Scholar 

  4. Meng X, Xu Z, Huang Y, Xie Y, Wang Y, Wan L, Lv Z, Cao J (2018) Interface characteristic and tensile property of friction stir lap welding of dissimilar aircraft 2060-T8 and 2099-T83 Al–Li alloys. Int J Adv Manuf Technol 94:1253–1261. https://doi.org/10.1007/s00170-017-0996-4

    Article  Google Scholar 

  5. Xu R, Cui S, Li H, Hou Y, Wei Z (2019) Improving hook characterization of friction stir lap welded Al alloy joint using a two-section stepped friction pin. Int J Adv Manuf Technol 102:3739–3746. https://doi.org/10.1007/s00170-019-03476-w

    Article  Google Scholar 

  6. Liu H, Zhao Y, Hu Y, Chen S, Lin Z (2015) Microstructural characteristics and mechanical properties of friction stir lap welding joint of Alclad 7B04-T74 aluminum alloy. Int J Adv Manuf Technol 78:1415–1425. https://doi.org/10.1007/s00170-014-6718-2

    Article  Google Scholar 

  7. Song Y, Yang X, Cui L, Hou X, Shen Z, Xu Y (2014) Defect features and mechanical properties of friction stir lap welded dissimilar AA2024–AA7075 aluminum alloy sheets. Mater Des 55:9–18. https://doi.org/10.1016/j.matdes.2013.09.062

    Article  Google Scholar 

  8. Yazdanian S, Chen Z, Littlefair G (2012) Effects of friction stir lap welding parameters on weld features on advancing side and fracture strength of AA6060-T5 welds. J Mater Sci 47:1251–1261. https://doi.org/10.1007/s10853-011-5747-6

    Article  Google Scholar 

  9. Costa M, Leitão C, Rodrigues D (2017) Influence of post-welding heat-treatment on the monotonic and fatigue strength of 6082-T6 friction stir lap welds. J Mater Process Technol 250:289–296. https://doi.org/10.1016/j.jmatprotec.2017.07.030

    Article  Google Scholar 

  10. Yadava M, Mishra R, Chen Y, Carlson B, Grant G (2010) Study of friction stir joining of thin aluminium sheets in lap joint configuration. Sci Technol Weld Join 15:70–75. https://doi.org/10.1179/136217109X12537145658733

    Article  Google Scholar 

  11. Liu H, Hu Y, Peng Y, Dou C, Wang Z (2016) The effect of interface defect on mechanical properties and its formation mechanism in friction stir lap welded joints of aluminum alloys. J Mater Process Technol 238:244–254. https://doi.org/10.1016/j.jmatprotec.2016.06.029

    Article  Google Scholar 

  12. Mahto R, Kumar R, Pal S, Panda S (2018) A comprehensive study on force, temperature, mechanical properties and micro-structural characterizations in friction stir lap welding of dissimilar materials (AA6061-T6 & AISI304). J Manuf Process 31:624–639. https://doi.org/10.1016/j.jmapro.2017.12.017

    Article  Google Scholar 

  13. Wen Q, Li W, Wang W, Wang F, Gao Y, Patel V (2019) Experimental and numerical investigations of bonding interface behavior in stationary shoulder friction stir lap welding. J Mater Sci Technol 35:192–200. https://doi.org/10.1016/j.jmst.2018.09.028

    Article  Google Scholar 

  14. Gibson B, Ballun M, Cook G, Strauss A (2015) Friction stir lap joining of 2198 aluminum–lithium alloy with weaving and pulsing variants. J Manuf Process 18:12–22. https://doi.org/10.1016/j.jmapro.2014.12.002

    Article  Google Scholar 

  15. Li Z, Yue Y, Ji S, Chai P, Zhou Z (2016) Joint features and mechanical properties of friction stir lap welded alclad 2024 aluminum alloy assisted by external stationary shoulder. Mater Des 90:238–247. https://doi.org/10.1016/j.matdes.2015.10.056

    Article  Google Scholar 

  16. Costa M, Verdera D, Costa J, Leitao C, Rodrigues D (2015) Influence of pin geometry and process parameters on friction stir lap welding of AA5754-H22 thin sheets. J Mater Process Technol 225:385–392. https://doi.org/10.1016/j.jmatprotec.2015.06.020

    Article  Google Scholar 

  17. Salari E, Jahazi M, Khodabandeh A, Ghasemi-Nanesa H (2014) Influence of tool geometry and rotational speed on mechanical properties and defect formation in friction stir lap welded 5456 aluminum alloy sheets. Mater Des 58:381–389. https://doi.org/10.1016/j.matdes.2014.02.005

    Article  Google Scholar 

  18. Imam M, Racherla V, Biswas K (2015) Effect of backing plate material in friction stir butt and lap welding of 6063-T4 aluminium alloy. Int J Adv Manuf Technol 77:2181–2195. https://doi.org/10.1007/s00170-014-6617-6

    Article  Google Scholar 

  19. Sidhar H, Martinez N, Mishra R, Silvanus J (2016) Friction stir welding of Al–Mg–Li 1424 alloy. Mater Des 106:146–152. https://doi.org/10.1016/j.matdes.2016.05.111

    Article  Google Scholar 

  20. Hangai Y, Takada K, Endo R, Fujii H, Aoki Y, Utsunomiya T (2018) Foaming of aluminum foam precursor during friction stir welding. J Mater Process Technol 259:109–115. https://doi.org/10.1016/j.jmatprotec.2018.04.016

    Article  Google Scholar 

  21. Huang Y, Wan L, Meng X, Xie Y, Lv Z, Zhou L (2018) Probe shape design for eliminating the defects of friction stir lap welded dissimilar materials. J Manuf Process 35:420–427. https://doi.org/10.1016/j.jmapro.2018.08.026

    Article  Google Scholar 

  22. Patel V, Badheka V, Kumar A (2017) Effect of polygonal pin profiles on friction stir processed superplasticity of AA7075 alloy. J Mater Process Technol 240:68–76. https://doi.org/10.1016/j.jmatprotec.2016.09.009

    Article  Google Scholar 

  23. Cui G, Ma Z, Li S (2008) Periodical plastic flow pattern in friction stir processed Al–Mg alloy. Scr Mater 58:1082–1085. https://doi.org/10.1016/j.scriptamat.2008.02.003

    Article  Google Scholar 

  24. Liu H, Ushioda K, Fujii H (2019) Elucidation of interface joining mechanism during friction stir welding through Cu/Cu-10Zn interfacial observations. Acta Mater 166:324–334. https://doi.org/10.1016/j.actamat.2019.01.004

    Article  Google Scholar 

  25. Huang Y, Huang T, Wan L, Meng X, Zhou L (2019) Material flow and mechanical properties of aluminum-to-steel self-riveting friction stir lap joints. J Mater Process Technol 263:129–137. https://doi.org/10.1016/j.jmatprotec.2018.08.011

    Article  Google Scholar 

  26. Huang Y, Meng X, Xie Y, Li J, Si X, Fan Q (2019) Improving mechanical properties of composite/metal friction stir lap welding joints via a taper-screwed pin with triple facets. J Mater Process Technol 268:80–86. https://doi.org/10.1016/j.jmatprotec.2019.01.011

    Article  Google Scholar 

  27. Huang Y, Lv Z, Wan L, Shen J, Santos J (2017) A new method of hybrid friction stir welding assisted by friction surfacing for joining dissimilar Ti/Al alloy. Mater Lett 207:172–175. https://doi.org/10.1016/j.matlet.2017.07.081

    Article  Google Scholar 

  28. Ji S, Niu S, Liu J, Meng X (2019) Friction stir lap welding of Al to Mg assisted by ultrasound and a Zn interlayer. J Mater Process Technol 267:141–151. https://doi.org/10.1016/j.jmatprotec.2018.12.010

    Article  Google Scholar 

  29. Huang Y, Wang T, Guo W, Wan L, Lv S (2014) Microstructure and surface mechanical property of AZ31 Mg/SiCp surface composite fabricated by direct friction stir processing. Mater Des 59:274–278. https://doi.org/10.1016/j.matdes.2014.02.067

    Article  Google Scholar 

  30. Andrade D, Leitão C, Rodrigues D (2018) Properties of lap welds in low carbon galvanized steel produced by tool assisted friction welding. J Mater Process Technol 260:77–86. https://doi.org/10.1016/j.jmatprotec.2018.05.018

    Article  Google Scholar 

  31. Klusemann B, Fischer G, Böhlke T, Svendsen B (2015) Thermomechanical characterization of Portevin–Le Châtelier bands in AlMg3 (AA5754) and modeling based on a modified Estrin–McCormick approach. Int J Plast 67:192–216. https://doi.org/10.1016/j.ijplas.2014.10.011

    Article  Google Scholar 

  32. Guan M, Wang Y, Huang Y, Liu X, Meng X, Xie Y, Li J (2019) Non-weld-thinning friction stir welding. Mater Lett 255:126506. https://doi.org/10.1016/j.matlet.2019.126506

    Article  Google Scholar 

  33. Yue Y, Li Z, Ji S, Huang Y, Zhou Z (2016) Effect of reverse-threaded pin on mechanical properties of friction stir lap welded alclad 2024 aluminum alloy. J Mater Sci Technol 32:671–675. https://doi.org/10.1016/j.jmst.2016.03.005

    Article  Google Scholar 

  34. Liu Z, Zhou Z, Ji S (2018) Improving interface morphology and shear failure load of friction stir lap welding by changing material concentrated zone location. Int J Adv Manuf Technol 95:4013–4022. https://doi.org/10.1007/s00170-017-1508-2

    Article  Google Scholar 

Download references

Funding

The work was jointly supported by the National Natural Science Foundation of China (Grant No. 51575132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxian Huang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Huang, Y., Meng, X. et al. Friction stir lap welding of AA2024-T4 with drastically different thickness. Int J Adv Manuf Technol 106, 3683–3691 (2020). https://doi.org/10.1007/s00170-019-04865-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04865-x

Keywords

Navigation