Skip to main content
Log in

Experimental Analysis and Weld Joint Characteristics Study on Friction Stir Welded Dissimilar Joints Fabricated by Novel Hybrid Pin Profiles

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Lightweight materials that offer a good strength-to-weight ratio have a significant demand in automotive, transportation, marine, defence, rail, and other industrial applications. In this work, friction stir welding (FSW) an eco-friendly process was used to make solid state joints with newly developed hybrid pin profiles. Weld trails were designed considering an orthogonal array of L27 runs with 5 parameters and 3 levels. FSW was carried out on a 10-mm-thick AA6061/AA7075 Al-alloys dissimilar combination. The present work mainly focused on finding the optimum weld parameters with good joint strength of FSW welded samples processed by using different hybrid pin profiles. Zener–Hollomon parameter studied the material flow pattern at the stir zone. XRD patterns revealed the presence of Al as a major phase and the presence of precipitation compounds as minor phase. Microstructural analysis revealed the formation of onion ring structured fine-grains at stir zone with well-mixed two different base materials. The joint efficiency factor achieved was 97%, which confirmed the AWS standards for aerospace applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Polmear I J, JIM 37 (1996) 12.

    CAS  Google Scholar 

  2. Colligan K, Weld Res (1999) 229.

  3. Davis J R, Alloying: Understanding of Basics: Aluminum and Aluminum Alloys, ASM International, Ohio (2001).

  4. Thomas W M, Nicholas E D, Needham J C, Friction Stir Butt Welding. International patent no. PCT/GB92/02203 (1991).

  5. Mishra R S, and Ma Z Y, Mater Sci Eng R 50 (2005) 1. https://doi.org/10.1016/j.mser.2005.07.001

    Article  CAS  Google Scholar 

  6. Nandan R, DebRoy T, and Bhadeshia H K D H, Prog Mater Sci 53 (2008) 980. https://doi.org/10.1016/j.pmatsci.2008.05.001

    Article  CAS  Google Scholar 

  7. Threadgill P L, Leonard A J, Shercliff H R, and Withers P J, Int Mat Rev 54 (2009) 49. https://doi.org/10.1179/174328009X411136

    Article  CAS  Google Scholar 

  8. Bjorneklett B I, Grong O, Myhr O R, and Kluken A O, Metall Mater Trans A Phys 30 (1999) 2667. https://doi.org/10.1007/s11661-999-0307-2

    Article  Google Scholar 

  9. Peel M, Steuwer A, Preuss M, and Withers P J, Acta Mater 51 (2003) 4791. https://doi.org/10.1016/S1359-6454(03)00319-7

    Article  CAS  Google Scholar 

  10. Hassan K A A, Prangnell P B, Norman A F, Price D A, and Williams S W, Sci Technol Weld Join 8 (2003) 257. https://doi.org/10.1179/136217103225005480

    Article  CAS  Google Scholar 

  11. Palanivel R, Koshy Mathews P, Murugan N, and Dinaharan I, Procedia Eng 38 (2012) 578. https://doi.org/10.1016/j.proeng.2012.06.072

    Article  CAS  Google Scholar 

  12. Kumar R D, Muthukumaran S, Venkateswaran T, Xavier V, and Sivakumar D, Surf Rev Lett 27 (2020) 1. https://doi.org/10.1142/S0218625X19501075

    Article  CAS  Google Scholar 

  13. Kumbhar N T, and Bhanumurthy K, J Metall (2012). https://doi.org/10.1155/2012/303756

    Article  Google Scholar 

  14. Hynes N R, Raja S, Tharmaraj R, Brykov M, and Ene A, Processes 10 (2022) 2052. https://doi.org/10.3390/pr10102052

    Article  CAS  Google Scholar 

  15. ShenbagaVelu P, Rajesh Jesudoss Hynes N, and Vignesh N J, Surf. Rev. Lett. 29 (2022) 6. https://doi.org/10.1142/S0218625X22500767

    Article  Google Scholar 

  16. Rajesh Jesudoss Hynes N, and ShenbagaVelu P, J Manuf Process 32 (2018) 288. https://doi.org/10.1016/j.jmapro.2018.02.014

    Article  Google Scholar 

  17. Rajesh Jesudoss Hynes N, VivekPrabhu M, ShenbagaVelu P, Kumar R, Tharmaraj R, Farooq M U, and Pruncu C I, Proc. Inst Mech. Eng. Pt. B J. Eng. Manufact (2021). https://doi.org/10.1177/09544054211043474

    Article  Google Scholar 

  18. Kranthi Kumar K, and Kumar A, Trans Indian Inst Met 76 (2023) 1985. https://doi.org/10.1007/s12666-023-02906-4

    Article  CAS  Google Scholar 

  19. Priya R, SubramanyaSarma V, and Prasad Rao K, Trans Indian Inst Met 62 (2009) 11.

    Article  CAS  Google Scholar 

  20. Ghiasvand A, Noori S M, Suksatan W, Tomków J, Memon S, and Derazkola H A, Mater 15 (2022) 2463. https://doi.org/10.3390/ma15072463

    Article  CAS  Google Scholar 

  21. Majeed M H, Eng J 21 (2015) 24.

    Article  Google Scholar 

  22. Srinivasa Rao T, Madhusudhan Reddy G, and Koteswara Rao S R, Trans Nonferrous Met Soc China 25 (2015) 1770. https://doi.org/10.1016/S1003-6326(15)63782-7

    Article  CAS  Google Scholar 

  23. Leitao C, Louro R, and Rodrigues D M, Mater Des 37 (2012) 402. https://doi.org/10.1016/j.matdes.2012.01.031

    Article  CAS  Google Scholar 

  24. Cole E G, Fehrenbacher A, Duffie N A, Zinn M R, Pfefferkorn F E, and Ferrier N J, Int J Adv Manuf Technol 71 (2014) 643. https://doi.org/10.1007/s00170-013-5485-9

    Article  Google Scholar 

  25. Guo J F, Chen H C, and Sun C N, Mater Des 56 (2014) 185. https://doi.org/10.1016/j.matdes.2013.10.082

    Article  CAS  Google Scholar 

  26. Mastanaiah P, Sharma A, and Madhusudhan Reddy G, Trans Indian Inst Met 69 (2016) 1415. https://doi.org/10.1007/s12666-015-0694-6

    Article  CAS  Google Scholar 

  27. Koilraj M, Sundareswaran V, Vijayan S, and Koteswara Rao S R, Mater Des 42 (2012) 1. https://doi.org/10.1016/j.matdes.2012.02.016

    Article  CAS  Google Scholar 

  28. Elangovan K, Balasubramanian V, and Valliappan M, Mater Manuf Process 23 (2008) 251. https://doi.org/10.1080/10426910701860723

    Article  CAS  Google Scholar 

  29. Zhang Y N, Cao X, Larose S, and Wanjara P, Can Metall Q 51 (2012) 250. https://doi.org/10.1179/1879139512Y.0000000015

    Article  CAS  Google Scholar 

  30. Meshram S D, Madhusudhan Reddy G, and Venugopal Rao A, Def Sci J 66 (2016) 57. https://doi.org/10.14429/dsj.66.8566

    Article  CAS  Google Scholar 

  31. Mehta M, De A, and DebRoy T, Sci Technol Weld Join 19 (2014) 534. https://doi.org/10.1179/1362171814Y.0000000221

    Article  CAS  Google Scholar 

  32. Mehta M, Reddy G M, Rao A V, and De A, Def Technol (2015). https://doi.org/10.1016/j.dt.2015.05.001

    Article  Google Scholar 

  33. Duong H D, Okazaki M, and Tran T H, Mater Manuf Process 36 (6), (2021) 693. https://doi.org/10.1080/10426914.2020.1854470

    Article  CAS  Google Scholar 

  34. Ramanjaneyulu K, Madhusudhan Reddy G, and Venugopal Rao A, Trans Ind Inst met 67 (5), (2014) 769. https://doi.org/10.1007/s12666-014-0401-z

    Article  CAS  Google Scholar 

  35. Essa A R, Ahmed M M, Mohamed A K, and El-Nikhaily A E, J Mater Res Technol 5 (2016) 234.

    Article  CAS  Google Scholar 

  36. Caroline T, and Jose Luis L, Int J Adv Manuf Technol 121 (2022) 1123. https://doi.org/10.1007/s00170-022-09262-5

    Article  Google Scholar 

  37. McNelley T R, Swaminathan S, and Su J Q, Scr Mater 58 (2008) 349. https://doi.org/10.1016/j.scriptamat.2007.09.064

    Article  CAS  Google Scholar 

  38. Kaibyshev Rustam, and Malopheyev Sergey, Mater Sci Forum 794–796 (2014) 784. https://doi.org/10.4028/www.scientific.net/MSF.794-796.784

    Article  CAS  Google Scholar 

  39. Roy G, Nandan R, and DebRoy T, Sci Technol Weld Join 11 (2006) 606. https://doi.org/10.1179/174329306X122811

    Article  Google Scholar 

  40. Heurtier P, Jones M J, Desrayaud C, Driver J H, Montheillet F, and Allehaux D, J Mater Process Technol 171 (2006) 348. https://doi.org/10.1016/j.jmatprotec.2005.07.014

    Article  CAS  Google Scholar 

  41. Rajamanickam N, Balusamy V, Madhusudhanna Reddy G, and Natarajan K, Mater Des 30 (2009) 2726. https://doi.org/10.1016/j.matdes.2008.09.035

    Article  CAS  Google Scholar 

  42. Nandan R, Prabu B, De A, and Debroy T, Weld J 86 (2007) 313.

    Google Scholar 

  43. Venkateswara Rao R, and Senthil Kumar M, Aus J Mech Engg 20 (2), (2022) 552. https://doi.org/10.1080/14484846.2020.1723864

    Article  Google Scholar 

  44. Arora A, Mehta M, De A, and Debroy T, J Adv Manuf Technol 61 (2012) 911. https://doi.org/10.1007/s00170-011-3759-7

    Article  Google Scholar 

  45. Banik A, Roy B S, Barma J D, and Saha S C, J Manuf Process 31 (2018) 395. https://doi.org/10.1016/j.jmapro.2017.11.030

    Article  Google Scholar 

  46. Trimble D, Monaghan J, and O’Donnell G E, CIRP Ann Manuf Technol 61 (2012) 9. https://doi.org/10.1016/j.cirp.2012.03.024

    Article  Google Scholar 

  47. Chao Y J, Qi X, and Tang W, J Manuf Sci Eng 125 (2003) 138. https://doi.org/10.1115/1.1537741

    Article  Google Scholar 

  48. Nandan R, Roy G G, and Debroy T, Metall Mater Trans A 37A (2006) 1247. https://doi.org/10.1007/s11661-006-1076-9

    Article  CAS  Google Scholar 

  49. Hussein S A, Thiru S, Izamshah R, and Md Tahir A S, Adv Mater Sci Eng. (2014). https://doi.org/10.1155/2014/980636

    Article  Google Scholar 

  50. Chen G Q, et al., Acta Metall Sin (Engg Lett) 33 (2020) 3. https://doi.org/10.1007/s40195-019-00942-y

    Article  Google Scholar 

  51. Ahmadnia M, Shahraki S, and Kamarposhti M A, Int J Adv Manuf Technol 87 (2016) 2337. https://doi.org/10.1007/s00170-016-8636-y

    Article  Google Scholar 

  52. AbdElnabi M M, Abdel-Mottaleb M M, Osman T A, and El Mokadem A, J Mater Res Technol 8 (2019) 1684. https://doi.org/10.1016/j.jmrt.2018.10.015

    Article  CAS  Google Scholar 

  53. Mallieswaran K, and Padmanabhan R, Adv Mater Process Technol 7 (2021) 150. https://doi.org/10.1080/2374068X.2020.1754744

    Article  Google Scholar 

  54. Schmidt H, Hattel J, and Wert J, Model Simul Mater Sci Eng 12 (2004) 143. https://doi.org/10.1088/0965-0393/12/1/013

    Article  Google Scholar 

  55. Colegrove P A, Shercliff H R, and Zettler R, Sci Technol Weld Join 12 (2007) 284. https://doi.org/10.1179/174329307X197539

    Article  CAS  Google Scholar 

  56. Arora A, DebRoy T, and Bhadeshia H K D H, Acta Mater 59 (2011) 2020. https://doi.org/10.1016/j.actamat.2010.12.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Management of VIT University and the Dean, School of Mechanical Engineering, VIT Chennai, India, for their support to publish this work.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

RVR collected the data and drafted the manuscript, and SK conceived the review, formulated its structure, and coordinated the data collection.

Corresponding author

Correspondence to Senthil Kumar Marikkannan.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkateswara Rao, R., Marikkannan, S.K. Experimental Analysis and Weld Joint Characteristics Study on Friction Stir Welded Dissimilar Joints Fabricated by Novel Hybrid Pin Profiles. Trans Indian Inst Met 77, 95–103 (2024). https://doi.org/10.1007/s12666-023-03042-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03042-9

Keywords

Navigation