Skip to main content
Log in

Developments of non-conventional drilling methods—a review

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Demand for drilled micro-holes on difficult to machine materials have increased over the past years and non-traditional drilling processes are commonly used to fabricate such micro-holes on difficult to machine materials. This research investigates different non-traditional drilling processes, such as electro discharge, laser beam, abrasive water jet, electrochemical and electrochemical discharge drilling methods. Drilling mechanism, material removal rate/machining speed and surface finish have been analysed for every process. These analyses clearly show that vaporisation, melting, chemical dissolution and mechanical erosion are dominant material removal mechanism during non-traditional drilling. The understanding on electro discharge, laser beam and abrasive water jet drilling are more developed than that of electrochemical, electrochemical discharge and hybrid drilling processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50

Similar content being viewed by others

References

  1. Skoczypiec S et al (2015) The capabilities of electrodischarge microdrilling of high aspect ratio holes in ceramic materials. Manag Prod Eng Rev 6(3):61–69

    Google Scholar 

  2. Hasan M, Zhao J, Jiang Z (2017) A review of modern advancements in micro drilling techniques. J Manuf Process 29:343–375

    Google Scholar 

  3. Zhao W, Li X, and Wang Z. (2006) Study on micro electrochemical machining at micro to meso-scale. In 2006 1st IEEE international conference on Nano/micro engineered and molecular systems. IEEE

  4. Suchánek L, Zetková I (2015) Evaluation of the surface small holes drilled by unconventional methods. Proc Eng 100:1582–1590

    Google Scholar 

  5. Zhang F, Zhu J (2013) An experimental study of drilling small and deep blind holes with an abrasive water jet. Springer Berlin Heidelberg, Berlin

    Google Scholar 

  6. Thoe TB, Aspinwall DK, Wise MLH (1998) Review on ultrasonic machining. Int J Mach Tools Manuf 38(4):239–255

    Google Scholar 

  7. Yilbas BS (2012) Laser drilling: practical applications. Springer Science & Business Media

  8. Bellotti M, Qian J, Reynaerts D (2018) Enhancement of the micro-EDM process for drilling through-holes. Procedia CIRP 68(1):610–615

    Google Scholar 

  9. Sen M, Shan HS (2005) A review of electrochemical macro- to micro-hole drilling processes. Int J Mach Tools Manuf 45(2):137–152

    MathSciNet  Google Scholar 

  10. Korat M, Acharya G (2014) A review on current research and development in abrasive waterjet machining. Int J Eng Res Appl 4(1):423–432

    Google Scholar 

  11. Hashish M, Whalen J (1993) Precision drilling of ceramic-coated components with abrasive-waterjets. J. Eng Gas Turbines Power 115(1):148–154

    Google Scholar 

  12. Parikh PJ, Lam SS (2009) Parameter estimation for abrasive water jet machining process using neural networks. Int J Adv Manuf Technol 40(5–6):497–502

    Google Scholar 

  13. Liu H-T (2007) Hole drilling with abrasive fluidjets. Int J Adv Manuf Technol 32(9):942–957

    Google Scholar 

  14. Kirk DJDU (2010) CSC publishing, powder and B. Engineering, A quick and easy formula for mesh-micron particle size conversions

  15. Zohoor M, Nourian SH (2012) Development of an algorithm for optimum control process to compensate the nozzle wear effect in cutting the hard and tough material using abrasive water jet cutting process. Int J Adv Manuf Technol 61(9):1019–1028

    Google Scholar 

  16. Akkurt A (2009) The effect of material type and plate thickness on drilling time of abrasive water jet drilling process. Mater Des 30(3):810–815

    Google Scholar 

  17. Kulekci MK (2002) Processes and apparatus developments in industrial waterjet applications. Int J Mach Tools Manuf 42(12):1297–1306

    Google Scholar 

  18. Alberdi A et al (2016) An experimental study on abrasive waterjet cutting of CFRP/Ti6Al4V stacks for drilling operations. Int J Adv Manuf Technol 86(1):691–704

    Google Scholar 

  19. Ramulu M, Posinasetti P, and Hashish M (2005) Analysis of the abrasive waterjet drilling process. in 2005 WJTA American Waterjet Conference

  20. Palleda M (2007) A study of taper angles and material removal rates of drilled holes in the abrasive water jet machining process. J Mater Process Technol 189(1):292–295

    Google Scholar 

  21. Guha A, Barron R, Balachandar R (2011) An experimental and numerical study of water jet cleaning process. J Mater Process Technol 211(4):610–618

    Google Scholar 

  22. Hunt D, Burnham C, and Kim T (1987) Surface finish characterization in machining advanced ceramics by abrasive waterjet. in Proceedings of the Fourth U. S. Water Jet Conference.

  23. Hamatani G, Ramulu M (1990) and technology, Machinability of high temperature composites by abrasive waterjet. J Eng Mater Technol 112(4):381–386

    Google Scholar 

  24. Momber AW and Kovacevic R (2012) Principles of abrasive water jet machining. Springer London

  25. Zhang, S., et al. (2005) Accurate hole drilling using an abrasive water jet in titanium. in American Waterjet conference

  26. Liu H-T, Schubert E (2009) Piercing in delicate materials with abrasive-waterjets. Int J Adv Manuf Technol 42(3–4):263–279

    Google Scholar 

  27. Phapale K et al (2016) Delamination characterization and comparative assessment of delamination control techniques in abrasive water jet drilling of CFRP. Proc Manuf 5:521–535

    Google Scholar 

  28. Hashish M (1988) Machining of advanced composites with abrasive-waterjets. Machining composites p. 1–18

  29. Davim JP, Reis P (2005) Damage and dimensional precision on milling carbon fiber-reinforced plastics using design experiments. J Mater Process Technol 160(2):160–167

    Google Scholar 

  30. Tam S et al (1993) Optimization of laser deep-hole drilling of Inconel 718 using the Taguchi method. J Mater Process Technol 37(1–4):741–757

    Google Scholar 

  31. Ghoreishi M et al (2002) Comparative statistical analysis of hole taper and circularity in laser percussion drilling. Int J Mach Tools Manuf 42(9):985–995

    Google Scholar 

  32. Kuar A et al (2006) Modelling and analysis of pulsed Nd: YAG laser machining characteristics during micro-drilling of zirconia (ZrO2). Int J Mach Tools Manuf 46(12–13):1301–1310

    Google Scholar 

  33. Forget P et al (1988) Laser drilling of a superalloy coated with ceramic. Mater Manuf Process 4(2):553–562

    Google Scholar 

  34. Gautam GD, Pandey AK (2018) Pulsed Nd: YAG laser beam drilling: a review. Opt Laser Technol 100:183–215

    Google Scholar 

  35. Wagner RE (1974) Laser drilling mechanics. J Appl Phys 45(10):4631–4637

    Google Scholar 

  36. Dubey AK, Yadava V (2008) Laser beam machining—a review. Int J Mach Tools Manuf 48(6):609–628

    Google Scholar 

  37. Majumder A (2010) Comparison of ANN with RSM in predicting surface roughness with respect to process parameters in Nd: YAG laser drilling. Int J Eng Sci Technol 2(10):5175–5186

    Google Scholar 

  38. Dhar S, Saini N, and Purohit R (2006) A review on laser drilling and its techniques. in International conference on advances in mechanical engineering

  39. Pham DT, Dimov SS, Petkov PV (2007) Laser milling of ceramic components. Int J Mach Tools Manuf 47(3):618–626

    Google Scholar 

  40. Ready J (1964) Interaction of high power laser radiation with absorbing surfaces (high power laser radiation interaction with absorbing opaque surfaces, estimating temperature rise and depth of vaporized hole). in 20th National electronices conference, Chicago

  41. Dabby F, Paek U-C (1972) High-intensity laser-induced vaporization and explosion of solid material. IEEE J Quantum Electron 8(2):106–111

    Google Scholar 

  42. Yilbas B (1997) Parametric study to improve laser hole drilling process. J Mater Process Technol 70(1–3):264–273

    Google Scholar 

  43. Yilbas B (1988) Investigation into drilling speed during laser drilling of metals. Opt Laser Technol 20(1):29–32

    Google Scholar 

  44. Yilbas BS (1987) Study of affecting parameters in laser hole drilling of sheet metals. J Eng Mater Technol 109(4):282–287

    Google Scholar 

  45. Mishra S, Yadava V (2013) Modeling and optimization of laser beam percussion drilling of thin aluminum sheet. Opt Laser Technol 48:461–474

    Google Scholar 

  46. Roos SO (1980) Laser drilling with different pulse shapes. J Appl Phys 51(9):5061–5063

    Google Scholar 

  47. Bandyopadhyay S et al (2002) Geometrical features and metallurgical characteristics of Nd:YAG laser drilled holes in thick IN718 and Ti–6Al–4V sheets. J Mater Process Technol 127(1):83–95

    Google Scholar 

  48. Wang H et al (2017) Laser drilling of structural ceramics—a review. J Eur Ceram Soc 37(4):1157–1173

    Google Scholar 

  49. Mishra S, Yadava VJMS (2013) And technology, modelling of hole taper and heat affected zone due to laser beam percussion drilling. Mach Sci Technol 17(2):270–291

    Google Scholar 

  50. Iwatani N, Doan HD, Fushinobu K (2014) Optimization of near-infrared laser drilling of silicon carbide under water. Int J Heat Mass Transf 71:515–520

    Google Scholar 

  51. Vora HD et al (2013) One-dimensional multipulse laser machining of structural alumina: evolution of surface topography. Int J Adv Manuf Technol 68(1):69–83

    Google Scholar 

  52. Kamlage G et al (2003) Deep drilling of metals by femtosecond laser pulses. Applied physics A 77(2):307–310

    Google Scholar 

  53. Luft A et al (1996) A study of thermal and mechanical effects on materials induced by pulsed laser drilling. Applied physics A 63(2):93–101

    Google Scholar 

  54. Low DKY, Li L, Byrd PJ (2000) The effects of process parameters on spatter deposition in laser percussion drilling. Opt Laser Technol 32(5):347–354

    Google Scholar 

  55. Rahman Z, Das AK, Chattopadhyaya S (2018) Microhole drilling through electrochemical processes: a review. Mater Manuf Process 33(13):1379–1405

    Google Scholar 

  56. Manikandan N, Kumanan S, Sathiyanarayanan C (2015) Multi response optimization of electrochemical drilling of titanium Ti6Al4V alloy using Taguchi based grey relational analysis. Indian J Eng Mater Sci 22(2):153–160

    Google Scholar 

  57. Bannard J (1979) Fine hole drilling using electrochemical machining, in proceedings of the nineteenth international machine tool design and research conference: held in Manchester, 13th – 15th September, 1978, B.J. Davies, Editor, Macmillan Education UK: London. p. 503–510

  58. Sharma RD, Singh R, Singh M (2012) Study of electro-chemical machining process for drilling hole. Int J Eng Res Technol 1:1–5

    Google Scholar 

  59. Chryssolouris G, Wollowitz M, Sun N (1984) Electrochemical hole making. CIRP Ann 33(1):99–104

    Google Scholar 

  60. Ahn SH et al (2004) Electro-chemical micro drilling using ultra short pulses. Precis Eng 28(2):129–134

    MathSciNet  Google Scholar 

  61. McGeough JA et al (2003) Recent research and developments in electrochemical machining. Int J Electricial Mach 8:1–14

    Google Scholar 

  62. Amalnik MS, McGeough JA (1996) Intelligent concurrent manufacturability evaluation of design for electrochemical machining. J Mater Process Technol 61(1):130–139

    Google Scholar 

  63. Wang X et al (2016) Electrochemical drilling with constant electrolyte flow. J Mater Process Technol 238:1–7

    Google Scholar 

  64. Noot MJ et al (1998) Real time numerical simulation and visualization of electrochemical drilling. Comput Vis Sci 1(2):105–111

    MATH  Google Scholar 

  65. Hocheng H et al (2003) A material removal analysis of electrochemical machining using flat-end cathode. J Mater Process Technol 140(1):264–268

    Google Scholar 

  66. Hewidy MS (2005) Controlling of metal removal thickness in ECM process. J Mater Process Technol 160(3):348–353

    Google Scholar 

  67. Mukherjee SK et al (2008) Effect of valency on material removal rate in electrochemical machining of aluminium. J Mater Process Technol 202(1):398–401

    Google Scholar 

  68. Mithu M, Fantoni G, Ciampi J (2011) The effect of high frequency and duty cycle in electrochemical microdrilling. Int J Adv Manuf Technol 55(9–12):921–933

    Google Scholar 

  69. Manna A and Malik A. (2016) Micro-drilling of Al/Al2O3-MMC on developed ECMM. in Proceedings of the world congress on engineering

  70. Rao SR, Padmanabhan G (2012) Application of Taguchi methods and ANOVA in optimization of process parameters for metal removal rate in electrochemical machining of Al/5% SiC composites. Int J Eng Res Appl 2(3):192–197

    Google Scholar 

  71. Mithu M, Fantoni G, Ciampi J (2011) A step towards the in-process monitoring for electrochemical microdrilling. Int J Adv Manuf Technol 57(9–12):969

    Google Scholar 

  72. Goswami R et al (2013) Optimization of electrochemical machining process parameters using Taguchi approach. Int J Eng Sci Technol 5(5):999

    Google Scholar 

  73. Thanigaivelan R, Arunachalam R, Drukpa P (2012) Drilling of micro-holes on copper using electrochemical micromachining. Int J Adv Manuf Technol 61(9–12):1185–1190

    Google Scholar 

  74. da Silva Neto JC, Da Silva EM, Da Silva MB (2006) Intervening variables in electrochemical machining. J Mater Process Technol 179(1–3):92–96

    Google Scholar 

  75. Zhu D, Xu HY (2002) Improvement of electrochemical machining accuracy by using dual pole tool. J Mater Process Technol 129(1):15–18

    Google Scholar 

  76. Qu NS et al (2013) Enhancement of surface roughness in electrochemical machining of Ti6Al4V by pulsating electrolyte. Int J Adv Manuf Technol 69(9):2703–2709

    Google Scholar 

  77. Pham DT et al (2007) An investigation of tube and rod electrode wear in micro EDM drilling. Int J Adv Manuf Technol 33(1):103–109

    Google Scholar 

  78. Yilmaz O, Okka MA (2010) Effect of single and multi-channel electrodes application on EDM fast hole drilling performance. Int J Adv Manuf Technol 51(1):185–194

    Google Scholar 

  79. Lim HS et al (2003) A study on the machining of high-aspect ratio micro-structures using micro-EDM. J Mater Process Technol 140(1):318–325

    Google Scholar 

  80. Ay M, Çaydaş U, Hasçalık A (2013) Optimization of micro-EDM drilling of inconel 718 superalloy. Int J Adv Manuf Technol 66(5):1015–1023

    Google Scholar 

  81. Diver C et al (2004) Micro-EDM drilling of tapered holes for industrial applications. J Mater Process Technol 149(1):296–303

    Google Scholar 

  82. Ho KH, Newman ST (2003) State of the art electrical discharge machining (EDM). Int J Mach Tools Manuf 43(13):1287–1300

    Google Scholar 

  83. Kunieda M et al (2005) Advancing EDM through fundamental insight into the process. CIRP Ann 54(2):64–87

    Google Scholar 

  84. Rajurkar KP, Sundaram MM, Malshe AP (2013) Review of electrochemical and electrodischarge machining. Procedia CIRP 6:13–26

    Google Scholar 

  85. D’Urso G, Maccarini G, Ravasio C (2014) Process performance of micro-EDM drilling of stainless steel. Int J Adv Manuf Technol 72(9):1287–1298

    Google Scholar 

  86. Kibria G et al (2010) Comparative study of different dielectrics for micro-EDM performance during microhole machining of Ti-6Al-4V alloy. Int J Adv Manuf Technol 48(5):557–570

    Google Scholar 

  87. Jilani ST, Pandey PC (1984) Experimetnal investigations into the performance of water as dielectric in EDM. Int J Mach Tool Des Res 24(1):31–43

    Google Scholar 

  88. Klink A (2014) Electric discharge machining. In: Laperrière L, Reinhart G (eds) CIRP Encyclopedia of production engineering. Springer Berlin Heidelberg, Berlin, pp 439–443

    Google Scholar 

  89. Mohri N et al (1995) Electrode wear process in electrical discharge machinings. CIRP Ann 44(1):165–168

    Google Scholar 

  90. Jahan MP, Wong YS, Rahman M (2010) A comparative experimental investigation of deep-hole micro-EDM drilling capability for cemented carbide (WC-Co) against austenitic stainless steel (SUS 304). Int J Adv Manuf Technol 46(9):1145–1160

    Google Scholar 

  91. Janmanee P and Muttamara A, (2011) A study of hole drilling on stainless steel AISI 431 by EDM using brass tube electrode. Int Trans J Eng Manag Appl Sci Technol

  92. Kuppan P, Rajadurai A, Narayanan S (2008) Influence of EDM process parameters in deep hole drilling of Inconel 718. Int J Adv Manuf Technol 38(1–2):74–84

    Google Scholar 

  93. Liu H-S et al (2005) A study on the characterization of high nickel alloy micro-holes using micro-EDM and their applications. J Mater Process Technol 169(3):418–426

    Google Scholar 

  94. Mathew J et al (2008) Effect of work material and machining conditions on the efficiency and accuracy of micro electric discharge drilling, Proceedings of 8th APCMP, China, pp 550–558

  95. Mohan B, Rajadurai A, Satyanarayana K (2002) Effect of SiC and rotation of electrode on electric discharge machining of Al–SiC composite. J Mater Process Technol 124(3):297–304

    Google Scholar 

  96. Neppiras E, Foskett R (1957) Ultrasonic machining-II. Operating conditions and performance of ultrasonic drills. Philips technology review 18(12):368–379

    Google Scholar 

  97. Gilmore R, Ultrasonic machining of ceramics. 1990: Society of manufacturing engineers

  98. Kennedy D, Grieve R (1975) Ultrasonic machining-a review. Prod Des Eng 54(9):481–486

    Google Scholar 

  99. Dvivedi A, Kumar P (2007) Surface quality evaluation in ultrasonic drilling through the Taguchi technique. Int J Adv Manuf Technol 34(1):131–140

    Google Scholar 

  100. Moreland M (1991) Ultrasonic machining—book chapter: ceramics and glasses. ASM Int Eng Mater Handbook ISBN 871702827:359–362

    Google Scholar 

  101. Drozda T and Wick C, (1983) Non-traditional machining. Soc Manuf Eng. p. 1–23

  102. Hocheng H, Tai NH, Liu CS (2000) Assessment of ultrasonic drilling of C/SiC composite material. Compos A: Appl Sci Manuf 31(2):133–142

    Google Scholar 

  103. Wiercigroch M, Neilson RD, Player MA (1999) Material removal rate prediction for ultrasonic drilling of hard materials using an impact oscillator approach. Phys Lett A 259(2):91–96

    Google Scholar 

  104. Ya G et al (2002) Analysis of the rotary ultrasonic machining mechanism. J Mater Process Technol 129(1):182–185

    Google Scholar 

  105. Adithan M, Venkatesh VC (1974) Parameter influence on tool wear in ultrasonic drilling. Tribology 7(6):260–264

    Google Scholar 

  106. Yu Z, Rajurkar K, Tandon A (2004) Study of 3D micro-ultrasonic machining. J Manuf Sci Eng 126(4):727–732

    Google Scholar 

  107. Cronjlger L (1961) Einsenken unter Ultraschalleinwirkung. Diss TH, Hannover

    Google Scholar 

  108. Riddei V, Roch G (1973) Cavitation erosion—a survey of the literature 1940–1970. Wear 23(1):133–136

    Google Scholar 

  109. Adithan M (1974) Tool wear studies in ultrasonic drilling. Wear 29(1):81–93

    Google Scholar 

  110. Komaraiah M, Reddy PN (1993) Relative performance of tool materials in ultrasonic machining. Wear 161(1):1–10

    Google Scholar 

  111. Pandey PC and Shan H (1980) Modern machining processes. Tata McGraw-Hill Education

  112. Singh R, Khamba JS (2006) Ultrasonic machining of titanium and its alloys: a review. J Mater Process Technol 173(2):125–135

    Google Scholar 

  113. Miller GE (1957) Special theory of ultrasonic machining. J Appl Phys 28(2):149–156

    Google Scholar 

  114. Anantha Ramu BL, Krishnamurthy R, Gokularathnam CV (1989) Machining performance of toughened zirconia ceramic and cold compact alumina ceramic in ultrasonic drilling. J Mech Work Technol 20:365–375

    Google Scholar 

  115. Goetze D (1956) Effect of vibration amplitude, frequency, and composition of the abrasive slurry on the rate of ultrasonic machining in ketos tool steel. J Acoust Soc Am 28(6):1033–1037

    Google Scholar 

  116. McGeough JA (1988) Advanced methods of machining. Springer Science & Business Media

  117. Singh R, Khamba JS (2008) Comparison of slurry effect on machining characteristics of titanium in ultrasonic drilling. J Mater Process Technol 197(1):200–205

    Google Scholar 

  118. Adithan M, Venkatesh VC (1976) Production accuracy of holes in ultrasonic drilling. Wear 40(3):309–318

    Google Scholar 

  119. Azarhoushang B, Akbari J (2007) Ultrasonic-assisted drilling of Inconel 738-LC. Int J Mach Tools Manuf 47(7):1027–1033

    Google Scholar 

  120. Hocheng H, Hsu CC (1995) Preliminary study of ultrasonic drilling of fiber-reinforced plastics. J Mater Process Technol 48(1):255–266

    Google Scholar 

  121. Yan BH et al (2002) Study of precision micro-holes in borosilicate glass using micro EDM combined with micro ultrasonic vibration machining. Int J Mach Tools Manuf 42(10):1105–1112

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pramanik.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Pramanik, A., Basak, A.K. et al. Developments of non-conventional drilling methods—a review. Int J Adv Manuf Technol 106, 2133–2166 (2020). https://doi.org/10.1007/s00170-019-04749-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04749-0

Keywords

Navigation