Skip to main content
Log in

Surface morphology prediction model for milling operations

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The capability of estimating the surface quality of workpieces in machining is still a challenging goal. The morphology of the processed surfaces does not only depend on nominal tool geometry and on machining parameters but it is also affected by several complex cutting phenomena and deviations from nominal conditions. In this paper, a framework model for estimating the surface texture in milling operations was developed. The model allows considering various tool geometries and the corresponding alignment/mounting errors. Since the back cutting phenomenon is adequately formalized, the model is particularly suitable for estimating the surface topography in face milling. Although the model does not consider the contribution due to the cutting forces, it is suitable for being fed by measured tool vibrations. The predicting capabilities of the conceived model were tested considering a high-feed milling operation that typically generates complex patterns on the processed surfaces. The model validation was carried out comparing the numerical and the real machined surface morphology. The analysis confirmed that the surface morphology can be predicted with negligible errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

0 1 :

Reference system

\(\overline {\boldsymbol {0}}{_{\boldsymbol {2}}}\) :

Reference system associated to the tool center

x1, y1, z1 :

Coordinates of the reference system 01

p :

Vector describing the position of a generic point on the cutting edge with respect to reference system 01

Δp :

Vector describing the relative position of the reference \(\overline {\boldsymbol {0}}{_{\boldsymbol {2}}}\) with respect to framework 01

\(\overline {\boldsymbol {p}}\) :

Vector describing a generic position on the cutting edge with respect to reference \(\overline {\boldsymbol {0}}{_{\boldsymbol {2}}}\)

\(\overline {x}_{2}\), \(\overline {y}_{2}\), \(\overline {z}_{2}\) :

Coordinates of the reference system \(\overline {\boldsymbol {0}}{_{\boldsymbol {2}}}\)

ΔX, ΔY, ΔZ :

elements of the vector Δp

\(\hat {x}_{3}\), \(\hat {y}_{3}\), \(\hat {z}_{3}\) :

Coordinates of the reference system \(\boldsymbol {\hat {0}}{_{\boldsymbol {3}}}\)

R :

Rotation matrix

𝜃 :

Rotation angle

R :

Tool radius

I :

Identity matrix

\(\widetilde {\mathbf {v}}\) :

Cross-product matrix

v :

Unit vector linked to the tool rotation axis

v i b :

Tool vibration

ω :

Tool rotation velocity

t :

Time

f j :

Generic j th component of the axis feed velocity

Δt :

Time interval for the simulation

t i :

Generic discretized i th time instant

Δx1r :

Mesh size ratio along x1 direction

Δy1r :

Mesh size ratio along y1 direction

Δz1r :

Mesh size ratio along z1 direction

R a :

Surface roughness

f z :

Feed per tooth

𝜃 e :

Tool lead angle

R e :

Insert tip radius

s :

Curvilinear abscissa

Δs :

Discretization step of the curvilinear abscissa

a p :

Axial depth of cut

Z :

Number of teeth

D nom :

Nominal diameter of the tool

D int :

Internal diameter of the tool

a e :

Radial depth of cut

Δx1 :

Mesh size along x1 direction

Δy1 :

Mesh size along y1 direction

Δz1 :

Mesh size along z1 direction

References

  1. Albertelli P, Goletti M, Torta M, Salehi M, Monno M (2016) Model-based broadband estimation of cutting forces and tool vibration in milling through in-process indirect multiple-sensors measurements. Int J Adv Manuf Technol 82:5–8. https://doi.org/10.1007/s00170-015-7402-x

    Article  Google Scholar 

  2. Altintas Y, Engin S (2001) Generalized modeling of mechanics and dynamics of milling cutters. CIRP Ann 50(1):25–30. https://doi.org/10.1016/S0007-8506(07)62063-0. https://www.sciencedirect.com/science/article/pii/S0007850607620630

    Article  Google Scholar 

  3. Antoniadis A, Savakis C, Bilalis N, Balouktsis A (2003) Prediction of surface topomorphy and roughness in ball-end milling. Int J Adv Manuf Technoly 21(12):965–971. https://doi.org/10.1007/s00170-002-1418-8

    Article  Google Scholar 

  4. Arizmendi M, Campa F, Fernández J, López de Lacalle L, Gil A, Bilbao E, Veiga F, Lamikiz A (2009) Model for surface topography prediction in peripheral milling considering tool vibration. CIRP Annals 58(1):93–96. https://doi.org/10.1016/J.CIRP.2009.03.084. https://www.sciencedirect.com/science/article/pii/S0007850609000377

    Article  Google Scholar 

  5. Benardos P, Vosniakos GC (2003) Predicting surface roughness in machining: a review. Int J Mach Tools Manuf 43(8):833–844. https://doi.org/10.1016/S0890-6955(03)00059-2. https://www.sciencedirect.com/science/article/pii/S0890695503000592

    Article  Google Scholar 

  6. Bouzakis KD, Aichouh P, Efstathiou K (2003) Determination of the chip geometry, cutting force and roughness in free form surfaces finishing milling, with ball end tools. Int J Mach Tools Manuf 43(5):499–514. https://doi.org/10.1016/S0890-6955(02)00265-1. https://www.sciencedirect.com/science/article/pii/S0890695502002651

    Article  Google Scholar 

  7. Buj-Corral I, Vivancos-Calvet J, González-Rojas H (2011) Influence of feed, eccentricity and helix angle on topography obtained in side milling processes. Int J Mach Tools Manuf 51(12):889–897. https://doi.org/10.1016/j.ijmachtools.2011.08.001. https://www.sciencedirect.com/science/article/pii/S0890695511001398

    Article  Google Scholar 

  8. Chen JS, Huang YK, Chen MS (2005) A study of the surface scallop generating mechanism in the ball-end milling process. Int J Mach Tools Manuf 45(9):1077–1084. https://doi.org/10.1016/J.IJMACHTOOLS.2004.11.019. https://www.sciencedirect.com/science/article/pii/S0890695504003050

    Article  Google Scholar 

  9. Costes JP, Moreau V (2011) Surface roughness prediction in milling based on tool displacements. J Manuf Process 13(2):133–140. https://doi.org/10.1016/j.jmapro.2011.02.003. https://www.sciencedirect.com/science/article/pii/S1526612511000089

    Article  Google Scholar 

  10. Denkena B, Böß V, Nespor D, Gilge P, Hohenstein S, Seume J (2015) Prediction of the 3D surface topography after ball end milling and its influence on aerodynamics. Procedia CIRP 31:221–227. https://doi.org/10.1016/J.PROCIR.2015.03.049. https://www.sciencedirect.com/science/article/pii/S2212827115002474

    Article  Google Scholar 

  11. Ehmann K, Hong M (1994) A generalized model of the surface generation process in metal cutting. CIRP Ann 43(1):483–486. https://doi.org/10.1016/S0007-8506(07)62258-6. https://www.sciencedirect.com/science/article/pii/S0007850607622586

    Article  Google Scholar 

  12. Elbestawi M, Ismail F, Yuen K (1994) Surface topography characterization in finish milling. Int J Mach Tools Manuf 34(2):245–255. https://doi.org/10.1016/0890-6955(94)90104-X. https://www.sciencedirect.com/science/article/pii/089069559490104X

    Article  Google Scholar 

  13. Gao T, Zhang W, Qiu K, Wan M (2006) Numerical simulation of machined surface topography and roughness in milling process. J Manuf Sci Eng 128(1):96. https://doi.org/10.1115/1.2123047. http://manufacturingscience.asmedigitalcollection.asme.org/article.aspx?articleid=1450271

    Article  Google Scholar 

  14. ISO (2009) 4287 geometrical product specification (gps). surface texture: Profile method. terms, definitions and surface texture parameters

  15. ISO (2012) https://bsol.bsigroup.com/search/search?searchkey=25178-2&originpage=header+search+box&autosuggestion=false

  16. Jiang H, Long X, Meng G (2008) Study of the correlation between surface generation and cutting vibrations in peripheral milling. J Mater Process Technol 208(1–3):229–238. https://doi.org/10.1016/J.JMATPROTEC.2007.12.127. https://www.sciencedirect.com/science/article/pii/S0924013608000381

    Article  Google Scholar 

  17. Kline WA, DeVor RE, Shareef IA (1982) The prediction of surface accuracy in end milling. J Eng Indus 104(3):272–278. https://doi.org/10.1115/1.3185830

    Article  Google Scholar 

  18. Lazoglu I (2003) Sculpture surface machining: a generalized model of ball-end milling force system. Int J Mach Tools Manuf 43(5):453–462. https://doi.org/10.1016/S0890-6955(02)00302-4. https://www.sciencedirect.com/science/article/pii/S0890695502003024

    Article  Google Scholar 

  19. Lee J, Bagheri B, Kao HA (2015) A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf Lett 3:18–23. https://doi.org/10.1016/j.mfglet.2014.12.0011503.07717. 1503.07717

    Article  Google Scholar 

  20. Lee KY, Kang MC, Jeong YH, Lee DW, Kim JS (2001) Simulation of surface roughness and profile in high-speed end milling. J Mater Process Technol 113(1–3):410–415. https://doi.org/10.1016/S0924-0136(01)00697-5. https://www.sciencedirect.com/science/article/pii/S0924013601006975

    Article  Google Scholar 

  21. Li S, Liu R, Zhang A (2002) Study on an end milling generation surface model and simulation taking into account of the main axle’s tolerance. J Mater Process Technol 129(1–3):86–90. https://doi.org/10.1016/S0924-0136(02)00581-2. https://www.sciencedirect.com/science/article/pii/S0924013602005812

    Article  Google Scholar 

  22. Liu X, Soshi M, Sahasrabudhe A, Yamazaki K, Mori M (2006) A geometrical simulation system of ball end finish milling process and its application for the prediction of surface micro features. J Manuf Sci Eng 128 (1):74. https://doi.org/10.1115/1.2039098. http://manufacturingscience.asmedigitalcollection.asme.org/article.aspx?articleid=1450253

    Article  Google Scholar 

  23. Melkote SN, Sutherland JW, King C (1999) The effect of tool flexibility on back-cutting in end milled surfaces. J Manuf Sci Eng 121(3):532. https://doi.org/10.1115/1.2832713. http://manufacturingscience.asmedigitalcollection.asme.org/article.aspx?articleid=1434817

    Article  Google Scholar 

  24. Montgomery D, Altintas Y (1991) Mechanism of cutting force and surface generation in dynamic milling. J Eng Indus 113(2):160–168. https://doi.org/10.1115/1.2899673

    Article  Google Scholar 

  25. Muñoz-Escalona P, Maropoulos PG (2015) A geometrical model for surface roughness prediction when face milling Al 7075-T7351 with square insert tools. J Manuf Syst 36:216–223. https://doi.org/10.1016/J.JMSY.2014.06.011. https://www.sciencedirect.com/science/article/pii/S0278612514000776

    Article  Google Scholar 

  26. Omar O, El-Wardany T, Ng E, Elbestawi M (2007) An improved cutting force and surface topography prediction model in end milling. Int J Mach Tools Manuf 47(7–8):1263–1275. https://doi.org/10.1016/J.IJMACHTOOLS.2006.08.021. https://www.sciencedirect.com/science/article/pii/S0890695506002136

    Article  Google Scholar 

  27. Ryu SH, Choi DK, Chu CN (2006) Roughness and texture generation on end milled surfaces. Int J Mach Tools Manuf 46(3–4): 404–412. https://doi.org/10.1016/J.IJMACHTOOLS.2005.05.010. https://www.sciencedirect.com/science/article/pii/S0890695505001239

    Article  Google Scholar 

  28. Schmitz TL, Couey J, Marsh E, Mauntler N, Hughes D (2007) Runout effects in milling: surface finish, surface location error, and stability. Int J Mach Tools Manuf 47(5):841–851. https://doi.org/10.1016/J.IJMACHTOOLS.2006.06.014. https://www.sciencedirect.com/science/article/pii/S0890695506001672

    Article  Google Scholar 

  29. Townsend A, Senin N, Blunt L, Leach R, Taylor J (2016) Surface texture metrology for metal additive manufacturing: a review. Precis Eng 46:34–47. https://doi.org/10.1016/j.precisioneng.2016.06.001. http://www.sciencedirect.com/science/article/pii/S0141635916300721

    Article  Google Scholar 

  30. Xu AP, Qu YX, Zhang DW, Huang T (2003) Simulation and experimental investigation of the end milling process considering the cutter flexibility. Int J Mach Tools Manuf 43(3):283–292. https://doi.org/10.1016/S0890-6955(02)00213-4. https://www.sciencedirect.com/science/article/pii/S0890695502002134

    Article  Google Scholar 

  31. Yang D, Liu Z (2015) Surface plastic deformation and surface topography prediction in peripheral milling with variable pitch end mill. Int J Mach Tools Manuf 91:43–53. https://doi.org/10.1016/J.IJMACHTOOLS.2014.11.009. https://www.sciencedirect.com/science/article/pii/S089069551440021X

    Article  Google Scholar 

  32. Zhang WH, Tan G, Wan M, Gao T, Bassir DH (2008) A new algorithm for the numerical simulation of machined surface topography in multiaxis ball-end milling. J Manuf Sci Eng 130(1):011003. https://doi.org/10.1115/1.2815337. http://manufacturingscience.asmedigitalcollection.asme.org/article.aspx?articleid=1451998

    Article  Google Scholar 

Download references

Funding

This work was supported by the regional project SENSE&MILL 803442 (POR-FESR 2014-2020, Regione Emilia Romagna) and the national project CLUSTER La fabbrica Intelligente High Performance Manufacturing (CTN0100163216758), founded by MIUR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Albertelli.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torta, M., Albertelli, P. & Monno, M. Surface morphology prediction model for milling operations. Int J Adv Manuf Technol 106, 3189–3201 (2020). https://doi.org/10.1007/s00170-019-04687-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04687-x

Keywords

Navigation