Skip to main content
Log in

Supersonic particle deposition as an additive technology: methods, challenges, and applications

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper presents a review of recent research inventions in the field of supersonic particle deposition (SPD) additive manufacturing (AM) technology. The SPD, also known as cold spray, is a coating technique that has gained popularity recently because of its ability to apply multi-component coatings. The SPD has the potential to revolutionize the global parts manufacturing and logistics landscape. The state-of-the-art, rapidly emerging cold spray manufacturing technology is an alternative to traditional additive manufacturing (AM) based on powder melting. It enables the rapid fabrication of parts that have properties similar to the parts developed by conventional manufacturing. In this paper, the history and process of SPD are explained. A broad background of metallic SPD AM is provided. SPD parameters, including substrate and particle properties, are discussed. Common challenges in creating consistent SPD coatings as well as challenges specific to metal and ceramic SPD are discussed. This paper explores the material science, processes, and performance gain. Several applications of SPD, including nuclear, aerospace, and electrical industries, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11.
Fig. 12
Fig. 13
Fig. 14.
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Zhou HX, Li CX, Ji G, Fu SL, Yang H, Luo XT, Yang GJ, Li CJ (2018) Local microstructure inhomogeneity and gas temperature effect in in-situ shot-peening assisted cold-sprayed Ti-6Al-4V coating. J Alloys Compd 766:694–704. https://doi.org/10.1016/j.jallcom.2018.07.009

    Article  Google Scholar 

  2. Stoltenhoff T, Kreye H, Richter HJ (2002) An analysis of the cold spray process and its coatings. J Therm Spray Technol 11(4):542–550. https://doi.org/10.1361/105996302770348682

    Article  Google Scholar 

  3. Assadi H, Kreye H, Gartner F, Klassen T (2016) Cold spraying - a materials perspective. Acta Mater 116:382–407. https://doi.org/10.1016/j.actamat.2016.06.034

    Article  Google Scholar 

  4. Sova A, Maestracci R, Jeandin M, Bertrand P, Smurov I (2017) Kinetics of composite coating formation process in cold spray: modelling and experimental validation. Surf Coat Technol 318:309–314. https://doi.org/10.1016/j.surfcoat.2016.06.084

    Article  Google Scholar 

  5. Borchers C, Gartner F, Stoltenhoff T, Assadi H, Kreye H (2003) Microstructural and macroscopic properties of cold sprayed copper coatings. J Appl Phys 93(12):10064–10070. https://doi.org/10.1063/1.1573740

    Article  Google Scholar 

  6. Dosta S, Bolelli G, Candeli A, Lusvarghi L, Cano IG, Guilemany JM (2017) Plastic deformation phenomena during cold spray impact of WC-Co particles onto metal substrates. Acta Mater 124:173–181. https://doi.org/10.1016/j.actamat.2016.11.010

    Article  Google Scholar 

  7. Vilardell AM, Cinca N, Dosta S, Cano IG, Guilemany JM (2019) Feasibility of using low pressure cold gas spray for the spraying of thick ceramic hydroxyapatite coatings. Int J Appl Ceram Technol 16(1):221–229. https://doi.org/10.1111/ijac.13088

    Article  Google Scholar 

  8. Meng FC, Hu DY, Gao Y, Yue S, Song J (2016) Cold-spray bonding mechanisms and deposition efficiency prediction for particle/substrate with distinct deformability. Mater Des 109:503–510. https://doi.org/10.1016/j.matdes.2016.07.103

    Article  Google Scholar 

  9. Moridi A, Hassani-Gangaraj SM, Guagliano M, Dao M (2014) Cold spray coating: review of material systems and future perspectives. Surf Eng 30(6):369–U329. https://doi.org/10.1179/1743294414y.0000000270

    Article  Google Scholar 

  10. Villa M, Dosta S, Guilemany JM (2013) Optimization of 316L stainless steel coatings on light alloys using cold gas spray. Surf Coat Technol 235:220–225. https://doi.org/10.1016/j.surfcoat.2013.07.036

    Article  Google Scholar 

  11. Brewer LN, Schiel JF, Menon ESK, Woo DJ (2018) The connections between powder variability and coating microstructures for cold spray deposition of austenitic stainless steel. Surf Coat Technol 334:50–60. https://doi.org/10.1016/j.surfcoat.2017.10.082

    Article  Google Scholar 

  12. Spencer K, Luzin V, Matthews N, Zhang MX (2012) Residual stresses in cold spray Al coatings: the effect of alloying and of process parameters. Surf Coat Technol 206(19-20):4249–4255. https://doi.org/10.1016/j.surfcoat.2012.04.034

    Article  Google Scholar 

  13. Dean SW, Potter JK, Yetter RA, Eden TJ, Champagne V, Trexler M (2013) Energetic intermetallic materials formed by cold spray. Intermetallics 43:121–130. https://doi.org/10.1016/j.intermet.2013.07.019

    Article  Google Scholar 

  14. Schmidt T, Gartner F, Assadi H, Kreye H (2006) Development of a generalized parameter window for cold spray deposition. Acta Mater 54(3):729–742. https://doi.org/10.1016/j.actamat.2005.10.005

    Article  Google Scholar 

  15. Moridi A, Hassani-Gangaraj SM, Guagliano M (2013) A hybrid approach to determine critical and erosion velocities in the cold spray process. Appl Surf Sci 273:617–624. https://doi.org/10.1016/j.apsusc.2013.02.089

    Article  Google Scholar 

  16. Schmidt T, Assadi H, Gartner F, Richter H, Stoltenhoff T, Kreye H, Klassen T (2009) From particle acceleration to impact and bonding in cold spraying. J Therm Spray Technol 18(5-6):794–808. https://doi.org/10.1007/s11666-009-9357-7

    Article  Google Scholar 

  17. Jenkins R, Yin S, Aldwell B, Meyer M, Lupoi R (2018) New insights into the in-process densification mechanism of cold spray Al coatings: low deposition efficiency induced densification. J Mater Sci Technol

  18. Xiong YM, Bae G, Xiong X, Lee C (2010) The effects of successive impacts and cold welds on the deposition onset of cold spray coatings. J Therm Spray Technol 19(3):575–585. https://doi.org/10.1007/s11666-009-9455-6

    Article  Google Scholar 

  19. Wang XM, Feng F, Klecka MA, Mordasky MD, Garofano JK, El-Wardany T, Nardi A, Champagne VK (2015) Characterization and modeling of the bonding process in cold spray additive manufacturing. Additive Manufacturing 8:149–162. https://doi.org/10.1016/j.addma.2015.03.006

    Article  Google Scholar 

  20. Ajdelsztajn L, Jodoin B, Kim GE, Schoenung JM (2005) Cold spray deposition of nanocrystalline aluminum alloys. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 36A(3):657–666. https://doi.org/10.1007/s11661-005-0182-4

    Article  Google Scholar 

  21. Liu JC, Cui H, Zhou XL, Wu XK, Zhang JS (2012) Nanocrystalline copper coatings produced by cold spraying. Met Mater Int 18(1):121–128. https://doi.org/10.1007/s12540-012-0014-1

    Article  Google Scholar 

  22. Ito K, Ichikawa Y (2019) Microstructure control of cold-sprayed pure iron coatings formed using mechanically milled powder. Surf Coat Technol 357:129–139. https://doi.org/10.1016/j.surfcoat.2018.10.016

    Article  Google Scholar 

  23. Ajdelsztajn L, Jodoin B, Schoenung JM (2006) Synthesis and mechanical properties of nanocrystalline Ni coatings produced by cold gas dynamic spraying. Surf Coat Technol 201(3-4):1166–1172. https://doi.org/10.1016/j.surfcoat.2006.01.037

    Article  Google Scholar 

  24. Rokni MR, Widener CA, Crawford GA, West MK (2015) An investigation into microstructure and mechanical properties of cold sprayed 7075 Al deposition. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 625:19–27. https://doi.org/10.1016/j.msea.2014.11.059

    Article  Google Scholar 

  25. Luo XT, Yao ML, Ma N, Takahashi M, Li CJ (2018) Deposition behavior, microstructure and mechanical properties of an in-situ micro-forging assisted cold spray enabled additively manufactured Inconel 718 alloy. Mater Des 155:384–395. https://doi.org/10.1016/j.matdes.2018.06.024

    Article  Google Scholar 

  26. Cho SC, Takagi K, Kwon H, Seo D, Ogawa K, Kikuchi K, Kawasaki A (2012) Multi-walled carbon nanotube-reinforced copper nanocomposite coating fabricated by low-pressure cold spray process. Surf Coat Technol 206(16):3488–3494. https://doi.org/10.1016/j.surfcoat.2012.02.021

    Article  Google Scholar 

  27. Cong DL, Li ZS, He QB, Chen HB, Zhao ZP, Zhang LP, Wu HL (2017) Wear behavior of corroded Al-Al2O3 composite coatings prepared by cold spray. Surf Coat Technol 326:247–254. https://doi.org/10.1016/j.surfcoat.2017.07.063

    Article  Google Scholar 

  28. Zhang YY, Epshteyn Y, Chromik RR (2018) Dry sliding wear behaviour of cold-sprayed Cu-MoS2 and Cu-MoS2-WC composite coatings: the influence of WC. Tribol Int 123:296–306. https://doi.org/10.1016/j.triboint.2017.12.015

    Article  Google Scholar 

  29. Alidokht SA, Manimunda P, Vo P, Yue S, Chromik RR (2016) Cold spray deposition of a Ni-WC composite coating and its dry sliding wear behavior. Surf Coat Technol 308:424–434. https://doi.org/10.1016/j.surfcoat.2016.09.089

    Article  Google Scholar 

  30. Tariq NH, Gyansah L, Wang JQ, Qiu X, Feng B, Siddique MT, Xiong TY (2018) Cold spray additive manufacturing: a viable strategy to fabricate thick B4C/Al composite coatings for neutron shielding applications. Surf Coat Technol 339:224–236. https://doi.org/10.1016/j.surfcoat.2018.02.007

    Article  Google Scholar 

  31. Petrackova K, Kondas J, Guagliano M (2018) Fixing a hole (with cold spray). Int J Fatigue 110:144–152. https://doi.org/10.1016/j.ijfatigue.2018.01.014

    Article  Google Scholar 

  32. Kumar S, Bae G, Lee C (2016) Influence of substrate roughness on bonding mechanism in cold spray. Surf Coat Technol 304:592–605. https://doi.org/10.1016/j.surfcoat.2016.07.082

    Article  Google Scholar 

  33. Yin S, Yan XC, Chen CY, Jenkins R, Liu M, Lupoi R (2018) Hybrid additive manufacturing of Al-Ti6Al4V functionally graded materials with selective laser melting and cold spraying. J Mater Process Technol 255:650–655. https://doi.org/10.1016/j.jmatprotec.2018.01.015

    Article  Google Scholar 

  34. Qiu X, Tariq NU, Wang JQ, Tang JR, Gyansah L, Zhao ZP, Xiong TY (2018) Microstructure, microhardness and tribological behavior of Al2O3 reinforced A380 aluminum alloy composite coatings prepared by cold spray technique. Surf Coat Technol 350:391–400. https://doi.org/10.1016/j.surfcoat.2018.07.039

    Article  Google Scholar 

  35. Lek JY, Bhowmik A, Tan AWY, Sun W, Song X, Zhai W, Buenconsejo PJ, Li F, Liu EJ, Lam YM, Boothroyd CB (2018) Understanding the microstructural evolution of cold sprayed Ti-6Al-4V coatings on Ti-6Al-4V substrates. Appl Surf Sci 459:492–504. https://doi.org/10.1016/j.apsusc.2018.07.175

    Article  Google Scholar 

  36. Ajaja J, Goldbaum D, Chromik RR (2011) Characterization of Ti cold spray coatings by indentation methods. Acta Astronautica 69(11-12):923–928. https://doi.org/10.1016/j.actaastro.2011.06.012

    Article  Google Scholar 

  37. Faizan-Ur-Rab M, Zahiri SH, Masood SH, Phan TD, Jahedi M, Nagarajah R (2016) Application of a holistic 3D model to estimate state of cold spray titanium particles. Mater Des 89:1227–1241. https://doi.org/10.1016/j.matdes.2015.10.075

    Article  Google Scholar 

  38. Arabgol Z, Vidaller MV, Assadi H, Gartner F, Klassen T (2017) Influence of thermal properties and temperature of substrate on the quality of cold-sprayed deposits. Acta Mater 127:287–301. https://doi.org/10.1016/j.actamat.2017.01.040

    Article  Google Scholar 

  39. King PC, Busch C, Kittel-Sherri T, Jahedi M, Gulizia S (2014) Interface melding in cold spray titanium particle impact. Surf Coat Technol 239:191–199. https://doi.org/10.1016/j.surfcoat.2013.11.039

    Article  Google Scholar 

  40. Hussain T, McCartney DG, Shipway PH, Zhang D (2009) Bonding mechanisms in cold spraying: the contributions of metallurgical and mechanical components. J Therm Spray Technol 18(3):364–379. https://doi.org/10.1007/s11666-009-9298-1

    Article  Google Scholar 

  41. Xie YC, Yin S, Chen CY, Planche MP, Liao HL, Lupoi R (2016) New insights into the coating/substrate interfacial bonding mechanism in cold spray. Scr Mater 125:1–4. https://doi.org/10.1016/j.scriptamat.2016.07.024

    Article  Google Scholar 

  42. Nikbakht R, Seyedein SH, Kheirandish S, Assadi H, Jodoin B (2018) Asymmetrical bonding in cold spraying of dissimilar materials. Appl Surf Sci 444:621–632. https://doi.org/10.1016/j.apsusc.2018.03.103

    Article  Google Scholar 

  43. Gartner F, Stoltenhoff T, Schmidt T, Kreye H (2006) The cold spray process and its potential for industrial applications. J Therm Spray Technol 15(2):223–232. https://doi.org/10.1361/105996306x108110

    Article  Google Scholar 

  44. Leitz KH, O'Sullivan M, Plankensteiner A, Kestler H, Sigl LS (2018) OpenFOAM modeling of particle heating and acceleration in cold spraying. J Therm Spray Technol 27(1-2):135–144. https://doi.org/10.1007/s11666-017-0644-4

    Article  Google Scholar 

  45. Li YJ, Luo XT, Rashid H, Li CJ (2018) A new approach to prepare fully dense Cu with high conductivities and anti-corrosion performance by cold spray. J Alloys Compd 740:406–413. https://doi.org/10.1016/j.jallcom.2017.11.053

    Article  Google Scholar 

  46. Winnicki M, Malachowska A, Piwowarczyk T, Rutkowska-Gorczyca M, Ambroziak A (2016) The bond strength of Al + Al2O3 cermet coatings deposited by low-pressure cold spraying. Arch Civil Mech Eng 16(4):743–752. https://doi.org/10.1016/j.acme.2016.04.014

    Article  Google Scholar 

  47. Malachowska A, Winnicki M, Konat L, Piwowarczyk T, Pawlowski L, Ambroziak A, Stachowicz M (2017) Possibility of spraying of copper coatings on polyamide 6 with low pressure cold spray method. Surf Coat Technol 318:82–89. https://doi.org/10.1016/j.surfcoat.2017.02.001

    Article  Google Scholar 

  48. Feng Y, Li WY, Guo CW, Gong MJ, Yang K (2018) Mechanical property improvement induced by nanoscaled deformation twins in cold-sprayed Cu coatings. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 727:119–122. https://doi.org/10.1016/j.msea.2018.04.113

    Article  Google Scholar 

  49. Lee YTR, Ashrafizadeh H, Fisher G, McDonald A (2017) Effect of type of reinforcing particles on the deposition efficiency and wear resistance of low-pressure cold-sprayed metal matrix composite coatings. Surf Coat Technol 324:190–200. https://doi.org/10.1016/j.surfcoat.2017.05.057

    Article  Google Scholar 

  50. Huang CJ, Li WY, Xie YC, Planche MP, Liao HL, Montavon G (2017) Effect of substrate type on deposition behavior and wear performance of ni-coated graphite/al composite coatings deposited by cold spraying. J Mater Sci Technol 33(4):338–346. https://doi.org/10.1016/j.jmst.2016.11.016

    Article  Google Scholar 

  51. Kumar S, Reddy SK, Joshi SV (2017) Microstructure and performance of cold sprayed Al-SiC composite coatings with high fraction of particulates. Surf Coat Technol 318:62–71. https://doi.org/10.1016/j.surfcoat.2016.11.047

    Article  Google Scholar 

  52. Na H, Bae G, Shin S, Kumar S, Kim H, Lee C (2009) Advanced deposition characteristics of kinetic sprayed bronze/diamond composite by tailoring feedstock properties. Compos Sci Technol 69(3-4):463–468. https://doi.org/10.1016/j.compscitech.2008.11.015

    Article  Google Scholar 

  53. Kwon H, Cho S, Kawasaki A (2015) Diamond-reinforced metal matrix bulk materials fabricated by a low-pressure cold-spray process. Mater Trans 56 (1):108-112. doi:https://doi.org/10.2320/matertrans.M2014145

    Article  Google Scholar 

  54. Tang J, Saha GC, Richter P, Kondas J, Colella A, Matteazzi P (2018) Effects of post-spray heat treatment on hardness and wear properties of Ti-WC high-pressure cold spray coatings. J Therm Spray Technol 27(7):1153–1164. https://doi.org/10.1007/s11666-018-0762-7

    Article  Google Scholar 

  55. Peat T, Galloway A, Toumpis A, McNutt P, Iqbal N (2017) The erosion performance of particle reinforced metal matrix composite coatings produced by co-deposition cold gas dynamic spraying. Appl Surf Sci 396:1623–1634. https://doi.org/10.1016/j.apsusc.2016.10.155

    Article  Google Scholar 

  56. Ji GC, Wang HT, Chen X, Bai XB, Dong ZX, Yang FG (2013) Characterization of cold-sprayed multimodal WC-12Co coating. Surf Coat Technol 235:536–543. https://doi.org/10.1016/j.surfcoat.2013.08.021

    Article  Google Scholar 

  57. Yandouzi M, Bu H, Brochu M, Jodoin B (2012) Nanostructured Al-based metal matrix composite coating production by pulsed gas dynamic spraying process. J Therm Spray Technol 21(3-4):609–619. https://doi.org/10.1007/s11666-011-9727-9

    Article  Google Scholar 

  58. Al-Hamdani KS, Murray JW, Hussain T, Kennedy A, Clare AT (2017) Cold sprayed metal-ceramic coatings using satellited powders. Mater Lett 198:184–187. https://doi.org/10.1016/j.matlet.2017.03.175

    Article  Google Scholar 

  59. Sova A, Kosarev V, Papyrin A, Smurov I (2011) Effect of ceramic particle velocity on cold spray deposition of metal-ceramic coatings. J Therm Spray Technol 20(1-2):285–291. https://doi.org/10.1007/s11666-010-9571-3

    Article  Google Scholar 

  60. Bakshi SR, Singh V, Balani K, McCartney DG, Seal S, Agarwal A (2008) Carbon nanotube reinforced aluminum composite coating via cold spraying. Surf Coat Technol 202(21):5162–5169. https://doi.org/10.1016/j.surfcoat.2008.05.042

    Article  Google Scholar 

  61. Bagherifard S, Monti S, Zuccoli MV, Riccio M, Kondas J, Guagliano M (2018) Cold spray deposition for additive manufacturing of freeform structural components compared to selective laser melting. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 721:339–350. https://doi.org/10.1016/j.msea.2018.02.094

    Article  Google Scholar 

  62. Yang K, Li WY, Guo XP, Yang XW, Xu YX (2018) Characterizations and anisotropy of cold-spraying additive-manufactured copper bulk. J Mater Sci Technol 34(9):1570–1579. https://doi.org/10.1016/j.jmst.2018.01.002

    Article  Google Scholar 

  63. Jing Z, Dejun K (2018) Effect of laser remelting on microstructure and immersion corrosion of cold-sprayed aluminum coating on S355 structural steel. Opt Laser Technol 106:348–356. https://doi.org/10.1016/j.optlastec.2018.04.026

    Article  Google Scholar 

  64. Daroonparvar R, Kay CM, Karthikeyan J (2018) Modified bond coatings improve service life of plasma sprayed thermal barrier coatings and protective performance of overlay coatings. Adv Mater Process 176(5):40–43

    Google Scholar 

  65. Cormier Y, Dupuis P, Jodoin B, Corbeil A (2015) Mechanical properties of cold gas dynamic-sprayed near-net-shaped fin arrays. J Therm Spray Technol 24(3):476–488. https://doi.org/10.1007/s11666-014-0203-1

    Article  Google Scholar 

  66. Pattison J, Celotto S, Morgan R, Bray M, O'Neill W (2007) Cold gas dynamic manufacturing: a non-thermal approach to freeform fabrication. Int J Mach Tool Manu 47(3-4):627–634. https://doi.org/10.1016/j.ijmachtools.2006.05.001

    Article  Google Scholar 

  67. Lynch M, Gu W, El-Wardany T, Hsu A, Viens D, Nardi A, Klecka M (2013) Design and topology/shape structural optimization for additively manufactured cold sprayed components. Virtual Phys Prototy 8:213–231. https://doi.org/10.1080/17452759.2013.837629

    Article  Google Scholar 

  68. Sova A, Grigoriev S, Okunkova A, Smurov I (2013) Potential of cold gas dynamic spray as additive manufacturing technology. Int J Adv Manuf Technol 69(9-12):2269–2278. https://doi.org/10.1007/s00170-013-5166-8

    Article  Google Scholar 

  69. High Pressure Cold Spray: Principles and Applications (2016). ASM International,

  70. Li WY, Li CJ, Liao HL (2006) Effect of annealing treatment on the microstructure and properties of cold-sprayed Cu coating. J Therm Spray Technol 15(2):206–211. https://doi.org/10.1361/105996306x108066

    Article  Google Scholar 

  71. Yin S, Cavaliere P, Aldwell B, Jenkins R, Liao HL, Li WY, Lupoi R (2018) Cold spray additive manufacturing and repair: fundamentals and applications. Additive Manufacturing 21:628–650. https://doi.org/10.1016/j.addma.2018.04.017

    Article  Google Scholar 

  72. Yoon SH, Lee C, Kim HJ Process development of brazed aluminum heat exchanger using a kinetic spraying process. In: International Thermal Spray Conference, Beijing, China, 2007. Global Coating Solutions. ASM International, p 1180

  73. Bobzin K, Öte M, Linke TF, Aachen R Integration of electrical functionality by transplantation of cold sprayed electrical conductive Cu tracks via injection moulding. In: International Thermal Spray Conference, Barcelona, Spain, 2014. ASM International, p 6

  74. Murray JW, Zuccoli MV, Hussain T (2018) Heat treatment of cold-sprayed C355 Al for repair: microstructure and mechanical properties. J Therm Spray Technol 27(1-2):159–168. https://doi.org/10.1007/s11666-017-0665-z

    Article  Google Scholar 

  75. Raoelison RN, Verdy C, Liao H (2017) Cold gas dynamic spray additive manufacturing today:deposit possibilities, technological solutions and viable applications. Mater Des 133:266-287. doi:https://doi.org/10.1016/j.matdes.2017.07.067

    Article  Google Scholar 

  76. Tazegul O, Dylmishi V, Cimenoglu H (2016) Copper matrix composite coatings produced by cold spraying process for electrical applications. Arch Civil Mech Eng 16(3):344–350. https://doi.org/10.1016/j.acme.2016.01.005

    Article  Google Scholar 

  77. Daroonparvar M, Yajid MAM, Kay CM, Bakhsheshi-Rad H, Gupta RK, Yusof NM, Ghandvar H, Arshad A, Zulkifli ISM (2018) Effects of Al2O3 diffusion barrier layer (including Y-containing small oxide precipitates) and nanostructured YSZ top coat on the oxidation behavior of HVOF NiCoCrAlTaY/APS YSZ coatings at 1100 degrees C. Corros Sci 144:13–34. https://doi.org/10.1016/j.corsci.2018.07.013

    Article  Google Scholar 

  78. Huang C, Yang K, Li N, Li W, Planche M, Verdy C, Liao H, Montavon G (2018) Microstructures and wear-corrosion performance of vacuum plasma sprayed and cold gas dynamic sprayed Muntz alloy coatings. Surf Coat Technol

  79. Yin S, Ekoi EJ, Lupton TL, Dowling DP, Lupoi R (2017) Cold spraying of WC-Co-Ni coatings using porous WC-17Co powders: formation mechanism, microstructure characterization and tribological performance. Mater Des 126:305–313. https://doi.org/10.1016/j.matdes.2017.04.040

    Article  Google Scholar 

  80. Watson TJ, Nardi A, Ernst AT, Cernatescu I, Bedard BA, Aindow M (2017) Cold spray deposition of an icosahedral-phase-strengthened aluminum alloy coating. Surf Coat Technol 324:57–63. https://doi.org/10.1016/j.surfcoat.2017.05.049

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep L. Menezes.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monette, Z., Kasar, A.K., Daroonparvar, M. et al. Supersonic particle deposition as an additive technology: methods, challenges, and applications. Int J Adv Manuf Technol 106, 2079–2099 (2020). https://doi.org/10.1007/s00170-019-04682-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04682-2

Keywords

Navigation