Skip to main content

Advertisement

Log in

Effect of eco-friendly chemical sodium bicarbonate treatment on the mechanical properties of flax fibres: Weibull statistics

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this work, a chemical treatment with different concentrations of NaHCO3 (sodium bicarbonate) of 5%, 10% and 20% on the surface of the flax fibre for a period of 120 h at room temperature is achieved. The purpose of this study is to observe the effect of different treatment processes on flax fibres, which is to say on its mechanical properties such as strength and strain at fracture and Young’s modulus. An important campaign of the test of more than 480 tests is carried out. Due to the variability of plant fibres, more than 120 samples were tested for each group at a gauge length (GL = 20 mm). The tensile mechanical property values of the flax fibres present a large dispersion of results; this is typical for natural fibres, hence the need for a statistical study. This dispersion has been studied and carried out by means and statistical tools such as the distribution of Weibull at two and three parameters by applying a prediction model to a confidence level at 95% CI and one-way ANOVA analysis of variance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. David-West OS, Banks WM, Pethrick RA (2011) A study of the effect of strain rate and temperature on the characteristics of quasi-unidirectional natural fibre reinforced composites. Proc Inst Mech Eng Part L J Mater Des Appl 225:133–148. https://doi.org/10.1177/0954420711404635

    Article  Google Scholar 

  2. Joshi SV, Drzal LT, Mohanty AK, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos Part A Appl Sci Manuf 35:371–376. https://doi.org/10.1016/j.compositesa.2003.09.016

    Article  Google Scholar 

  3. Sanjay MR, Madhu P, Jawaid M, Senthamaraikannan P, Senthil S, Pradeep S. Characterization and properties of natural fiber polymer composites: a comprehensive review. vol. 172. Elsevier B.V.; 2018. doi:https://doi.org/10.1016/j.jclepro.2017.10.101.

    Article  Google Scholar 

  4. Väisänen T, Das O, Tomppo L (2017) A review on new bio-based constituents for natural fiber-polymer composites. J Clean Prod 149:582–596. https://doi.org/10.1016/j.jclepro.2017.02.132

    Article  Google Scholar 

  5. Wang KF, Wang BL (2018) A mechanical degradation model for bidirectional natural fiber reinforced composites under hydrothermal ageing and applying in buckling and vibration analysis. Compos Struct 206:594–600. https://doi.org/10.1016/j.compstruct.2018.08.063

    Article  Google Scholar 

  6. De Rosa IM, Kenny JM, Puglia D, Santulli C, Sarasini F (2010) Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Compos Sci Technol 70:116–122. https://doi.org/10.1016/j.compscitech.2009.09.013

    Article  Google Scholar 

  7. Resende LM, Franca AS, Oliveira LS (2019) Buriti (Mauritia flexuosa L. f.) fruit by-products flours: Evaluation as source of dietary fibers and natural antioxidants. Food Chem 270:53–60. https://doi.org/10.1016/j.foodchem.2018.07.079

    Article  Google Scholar 

  8. Dutta S, Kim NK, Das R, Bhattacharyya D (2019) Effects of sample orientation on the fire reaction properties of natural fibre composites. Compos Part B Eng 157:195–206. https://doi.org/10.1016/j.compositesb.2018.08.118

    Article  Google Scholar 

  9. De Rosa IM, Kenny JM, Puglia D, Santulli C, Sarasini F (2010) Tensile behavior of New Zealand flax (Phormium tenax) fibers. J Reinf Plast Compos 29:3450–3454. https://doi.org/10.1177/0731684410372264

    Article  Google Scholar 

  10. Asgarinia S, Viriyasuthee C, Phillips S, Dubé M, Baets J, Van Vuure A et al (2015) Tension-tension fatigue behaviour of woven flax/epoxy composites. J Reinf Plast Compos 34:857–867. https://doi.org/10.1177/0731684415581527

    Article  Google Scholar 

  11. Baets J, Plastria D, Ivens J, Verpoest I (2014) Determination of the optimal flax fibre preparation for use in unidirectional flax-epoxy composites. J Reinf Plast Compos 33:493–502. https://doi.org/10.1177/0731684413518620

    Article  Google Scholar 

  12. Andersons J, SparniņŠ E, Poriķe E (2009) Strength and damage of elementary flax fibers extracted from tow and long line flax. J Compos Mater 43:2653–2664. https://doi.org/10.1177/0021998309345035

    Article  Google Scholar 

  13. Virk AS, Hall W, Summerscales J (2009) Multiple Data Set (MDS) weak-link scaling analysis of jute fibres. Compos Part A Appl Sci Manuf 40:1764–1771. https://doi.org/10.1016/j.compositesa.2009.08.022

    Article  Google Scholar 

  14. Dobah Y, Bourchak M, Bezazi A, Belaadi A, Scarpa F (2016) Multi-axial mechanical characterization of jute fiber/polyester composite materials. Compos Part B Eng 90:450–456. https://doi.org/10.1016/j.compositesb.2015.10.030

    Article  Google Scholar 

  15. Belaadi A, Bezazi A, Bourchak M, Scarpa F (2013) Tensile static and fatigue behaviour of sisal fibres. Mater Des 46:76–83. https://doi.org/10.1016/j.matdes.2012.09.048

    Article  Google Scholar 

  16. Belaadi A, Bezazi A, Maache M, Scarpa F (2014) Fatigue in sisal fiber reinforced polyester composites: Hysteresis and energy dissipation. Procedia Eng 74:325–328. https://doi.org/10.1016/j.proeng.2014.06.272

    Article  Google Scholar 

  17. Belaadi A, Bezazi A, Bourchak M, Scarpa F, Zhu C (2014) Thermochemical and statistical mechanical properties of natural sisal fibres. Compos Part B Eng 67:481–489. https://doi.org/10.1016/j.compositesb.2014.07.029

    Article  Google Scholar 

  18. Amroune S, Bezazi A, Belaadi A, Zhu C, Scarpa F, Rahatekar S et al (2015) Tensile mechanical properties and surface chemical sensitivity of technical fibres from date palm fruit branches (Phoenix dactylifera L.). Compos Part A Appl Sci Manuf 71:95–106. https://doi.org/10.1016/j.compositesa.2014.12.011

    Article  Google Scholar 

  19. Bezazi A, Belaadi A, Bourchak M, Scarpa F, Boba K (2014) Novel extraction techniques, chemical and mechanical characterisation of Agave americana L. natural fibres. Compos Part B Eng 66:194–203. https://doi.org/10.1016/j.compositesb.2014.05.014

    Article  Google Scholar 

  20. Fiore V, Valenza A, Di Bella G (2011) Artichoke (Cynara cardunculus L.) fibres as potential reinforcement of composite structures. Compos Sci Technol 71:1138–1144. https://doi.org/10.1016/j.compscitech.2011.04.003

    Article  Google Scholar 

  21. Placet V (2009) Characterization of the thermo-mechanical behaviour of Hemp fibres intended for the manufacturing of high performance composites. Compos Part A Appl Sci Manuf 40:1111–1118. https://doi.org/10.1016/j.compositesa.2009.04.031

    Article  Google Scholar 

  22. Reddy KO, Maheswari CU, Dhlamini MS, Mothudi BM, Kommula VP, Zhang J, Zhang J, Rajulu AV (2018) Extraction and characterization of cellulose single fibers from native African napier grass. Carbohydr Polym 188:85–91. https://doi.org/10.1016/j.carbpol.2018.01.110

    Article  Google Scholar 

  23. Manimaran P, Senthamaraikannan P, Murugananthan K, Sanjay MR (2018) Physicochemical properties of new cellulosic fibers from Azadirachta indica Plant. J Nat Fibers 15:29–38. https://doi.org/10.1080/15440478.2017.1302388

    Article  Google Scholar 

  24. Sandeep NC, Raghavendra Rao H, Hemachandra RK (2017) Extraction and characterization of physicochemical and tensile properties of Aegle Marmelos fiber. Mater Today Proc 4:3158–3165. https://doi.org/10.1016/j.matpr.2017.02.200

    Article  Google Scholar 

  25. Van De Velde K, Kiekens P (1999) Wettability of natural fibres used as reinforcement for composites. Angew Makromol Chem 272:87–93. https://doi.org/10.1002/(SICI)1522-9505(19991201)272:1<87::AID-APMC87>3.0.CO;2-Q

    Article  Google Scholar 

  26. Bledzki AK, Gassan J (1999) Composites-reinforced-with-cellulose-based-fibres_1999_Progress-in-Polymer-Science.pdf. Prog Polym Sci 24:221–274. https://doi.org/10.1016/S0079-6700(98)00018-5

    Article  Google Scholar 

  27. Fiore V, Scalici T, Nicoletti F, Vitale G, Prestipino M, Valenza A (2016) A new eco-friendly chemical treatment of natural fibres: effect of sodium bicarbonate on properties of sisal fibre and its epoxy composites. Compos Part B Eng 85:150–160. https://doi.org/10.1016/j.compositesb.2015.09.028

    Article  Google Scholar 

  28. dos Santos JC, Siqueira RL, Vieira LMG, Freire RTS, Mano V, Panzera TH (2018) Effects of sodium carbonate on the performance of epoxy and polyester coir-reinforced composites. Polym Test 67:533–544. https://doi.org/10.1016/j.polymertesting.2018.03.043

    Article  Google Scholar 

  29. Chaitanya S, Singh I (2018) Sisal fiber-reinforced green composites: effect of ecofriendly fiber treatment. Polym Compos 12:4310–4321. https://doi.org/10.1002/pc.24511

    Article  Google Scholar 

  30. Fiore V, Scalici T, Valenza A (2018) Effect of sodium bicarbonate treatment on mechanical properties of flax-reinforced epoxy composite materials. J Compos Mater 52:1061–1072. https://doi.org/10.1177/0021998317720009

    Article  Google Scholar 

  31. Baley C, Le Duigou A, Bourmaud A, Davies P (2012) Influence of drying on the mechanical behaviour of flax fibres and their unidirectional composites. Compos Part A Appl Sci Manuf 43:1226–1233. https://doi.org/10.1016/j.compositesa.2012.03.005

    Article  Google Scholar 

  32. Lefeuvre A, Bourmaud A, Baley C (2015) Optimization of the mechanical performance of UD flax/epoxy composites by selection of fibres along the stem. Compos Part A Appl Sci Manuf 77:204–208. https://doi.org/10.1016/j.compositesa.2015.07.009

    Article  Google Scholar 

  33. Bourmaud A, Ausias G, Lebrun G, Tachon ML, Baley C (2013) Observation of the structure of a composite polypropylene/flax and damage mechanisms under stress. Ind Crop Prod 43:225–236. https://doi.org/10.1016/j.indcrop.2012.07.030

    Article  Google Scholar 

  34. Baley C, Bourmaud A (2014) Average tensile properties of French elementary flax fibers. Mater Lett 122:159–161. https://doi.org/10.1016/j.matlet.2014.02.030

    Article  Google Scholar 

  35. Baley C, Davies P, Grohens Y, Dolto G (2004) Application of interlaminar tests to marine composites. A literature review. Appl Compos Mater 11:99–126. https://doi.org/10.1023/B:ACMA.0000012902.93986.bf

    Article  Google Scholar 

  36. Gassan J, Bledzki AK (1999) Possibilities for improving the mechanical properties of jute/epoxy composites by alkali treatment of fibres. Compos Sci Technol 59:1303–1309. https://doi.org/10.1016/S0266-3538(98)00169-9

    Article  Google Scholar 

  37. Azwa ZN, Yousif BF, Manalo AC, Karunasena W (2013) A review on the degradability of polymeric composites based on natural fibres. Mater Des 47:424–442. https://doi.org/10.1016/j.matdes.2012.11.025

    Article  Google Scholar 

  38. Liang S, Guillaumat L, Gning PB (2015) Impact behaviour of flax/epoxy composite plates. Int J Impact Eng 80:56–64. https://doi.org/10.1016/j.ijimpeng.2015.01.006

    Article  Google Scholar 

  39. Marson GA, Frollini E, Arantes GM, El Seoud OA, Regiani AM (2002) Some aspects of acylation of cellulose under homogeneous solution conditions. J Polym Sci Part A Polym Chem:1357–1363. https://doi.org/10.1002/(sici)1099-0518(19990501)37:9<1357::aid-pola16>3.0.co;2-y

  40. Kalia S, Kaith BS, Kaur I (2009) Pretreatments of natural fibers and their application as reinforcing material in polymer composites-a review. Polym Eng Sci. https://doi.org/10.1002/pen.21328

    Article  Google Scholar 

  41. Sarkar BK, Ray D, Bose NR, Rana AK (2001) Effect of alkali treated jute fibres on composite properties. Bull Mater Sci 24:129–135. https://doi.org/10.1007/BF02710089

    Article  Google Scholar 

  42. Zafeiropoulos NE, Baillie CA, Matthews FL (2001) Study of transcrystallinity and its effect on the interface in flax fibre reinforced composite materials. Compos Part A Appl Sci Manuf 32:525–543. https://doi.org/10.1016/S1359-835X(00)00058-0

    Article  Google Scholar 

  43. John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos. https://doi.org/10.1002/pc.20461

    Article  Google Scholar 

  44. Célino A, Fréour S, Jacquemin F, Casari P (2014) The hygroscopic behavior of plant fibers: a review. Front Chem. https://doi.org/10.3389/fchem.2013.00043

  45. Obi Reddy K, Uma Maheswari C, Shukla M, Song JI, Varada RA (2013) Tensile and structural characterization of alkali treated Borassus fruit fine fibers. Compos Part B Eng 44:433–438. https://doi.org/10.1016/j.compositesb.2012.04.075

    Article  Google Scholar 

  46. Alawar A, Hamed AM, Al-Kaabi K (2009) Characterization of treated date palm tree fiber as composite reinforcement. Compos Part B Eng 40:601–606. https://doi.org/10.1016/j.compositesb.2009.04.018

    Article  Google Scholar 

  47. Lu N, Oza S (2013) Thermal stability and thermo-mechanical properties of hemp-high density polyethylene composites: effect of two different chemical modifications. Compos Part B Eng 44:484–490. https://doi.org/10.1016/j.compositesb.2012.03.024

    Article  Google Scholar 

  48. Venkateshwaran N, Elaya Perumal A, Arunsundaranayagam D. Fiber surface treatment and its effect on mechanical and visco-elastic behaviour of banana/epoxy composite. vol. 47. Elsevier Ltd; 2013. doi:10.1016/j.matdes.2012.12.001.

    Article  Google Scholar 

  49. Zafeiropoulos NE, Baillie CA (2007) A study of the effect of surface treatments on the tensile strength of flax fibres: part II. Application of Weibull statistics. Compos Part A Appl Sci Manuf 38:629–638. https://doi.org/10.1016/j.compositesa.2006.02.005

    Article  Google Scholar 

  50. Zafeiropoulos NE, Dijon GG, Baillie CA (2007) A study of the effect of surface treatments on the tensile strength of flax fibres: part I. Application of Gaussian statistics. Compos Part A Appl Sci Manuf. https://doi.org/10.1016/j.compositesa.2006.02.004.

    Article  Google Scholar 

  51. Kompella MK, Lambros J (2002) Micromechanical characterization of cellulose fibers. Polym Test 21:523–530. https://doi.org/10.1016/S0142-9418(01)00119-2

    Article  Google Scholar 

  52. Belaadi A, Bourchak M, Aouici H (2016) Mechanical properties of vegetal yarn: statistical approach. Compos Part B Eng 106:139–153. https://doi.org/10.1016/j.compositesb.2016.09.033

    Article  Google Scholar 

  53. Silva F de A, Chawla N, Filho RD de T. Tensile behavior of high performance natural (sisal) fibers. Compos Sci Technol 2008;68:3438–3443. doi:https://doi.org/10.1016/j.compscitech.2008.10.001.

    Article  Google Scholar 

  54. Charlet K, Baley C, Morvan C, Jernot JP, Gomina M, Bréard J (2007) Characteristics of Hermès flax fibres as a function of their location in the stem and properties of the derived unidirectional composites. Compos Part A Appl Sci Manuf 38:1912–1921. https://doi.org/10.1016/j.compositesa.2007.03.006

    Article  Google Scholar 

  55. Baley C (2004) Influence of kink bands on the tensile strength of flax fibers. J Mater Sci 39:331–334. https://doi.org/10.1023/B:JMSC.0000007768.63055.ae

    Article  Google Scholar 

  56. Baley C (2002) Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Compos - Part A Appl Sci Manuf 33:939–948. https://doi.org/10.1016/S1359-835X(02)00040-4

    Article  Google Scholar 

  57. D3822/D3822M-14. Standard Test Method for Tensile Properties of Single Textile Fibers. ASTM Int USA 2014. https://doi.org/10.1520/D3822.

  58. Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297

    MATH  Google Scholar 

  59. Jihan S, Siddiquib AM, Sweet MAS (1997) Fracture strength of E-glass fibre strands using acoustic emission. NDT E Int 30:383–388. https://doi.org/10.1016/S0963-8695(97)00009-1

    Article  Google Scholar 

  60. El Asloun M, Donnet JB, Guilpain G, Nardin M, Schultz J (1989) On the estimation of the tensile strength of carbon fibres at short lengths. J Mater Sci 24:3504–3510. https://doi.org/10.1007/BF02385732

    Article  Google Scholar 

  61. Zureick A-H, Bennett RM, Ellingwood BR (2006) Statistical characterization of fiber-reinforced polymer composite material properties for structural design. J Struct Eng 132:1320–1327. https://doi.org/10.1061/(asce)0733-9445(2006)132:8(1320)

    Article  Google Scholar 

  62. Colomban P, Herrera Ramirez JM, Paquin R, Marcellan A, Bunsell A (2006) Micro-Raman study of the fatigue and fracture behaviour of single PA66 fibres: Comparison with single PET and PP fibres. Eng Fract Mech 73:2463–2475. https://doi.org/10.1016/j.engfracmech.2006.04.033

    Article  Google Scholar 

  63. Jr. FJM. The Kolmogorov-Smirnov Test for goodness of fit. J Am Stat Assoc 1951;46:68–78.

  64. Elsayed EA (2008) Reliability prediction and accelerated testing. Springer Ser Reliab Eng. https://doi.org/10.1007/978-1-84800-011-7_7

  65. Virk AS, Hall W, Summerscales J (2010) Physical characterization of jute technical fibers: fiber dimensions. J Nat Fibers 7:216–228. https://doi.org/10.1080/15440478.2010.504389

    Article  Google Scholar 

  66. Andersons J, Sparniņš E, Joffe R, Wallström L (2005) Strength distribution of elementary flax fibres. Compos Sci Technol 65:693–702. https://doi.org/10.1016/j.compscitech.2004.10.001

    Article  Google Scholar 

  67. Toasa Caiza PD, Ummenhofer T (2018) Consideration of the runouts and their subsequent retests into S-N curves modelling based on a three-parameter Weibull distribution. Int J Fatigue. https://doi.org/10.1016/j.ijfatigue.2017.09.010

    Article  Google Scholar 

  68. Moothoo J, Allaoui S, Ouagne P, Soulat D (2014) A study of the tensile behaviour of flax tows and their potential for composite processing. Mater Des 55:764–772. https://doi.org/10.1016/j.matdes.2013.10.048

    Article  Google Scholar 

  69. Virk AS, Hall W, Summerscales J (2009) Tensile properties of jute fibres. Mater Sci Technol 25:1289–1295. https://doi.org/10.1179/174328408x385818

    Article  Google Scholar 

  70. Virk AS, Hall W, Summerscales J (2010) Failure strain as the key design criterion for fracture of natural fibre composites. Compos Sci Technol 70:995–999. https://doi.org/10.1016/j.compscitech.2010.02.018

    Article  Google Scholar 

  71. Virk AS, Hall W, Summerscales J (2012) Modulus and strength prediction for natural fibre composites. Mater Sci Technol 28:864–871. https://doi.org/10.1179/1743284712y.0000000022

    Article  Google Scholar 

  72. Chi Z, Chou TW, Shen G (1984) Determination of single fibre strength distribution from fibre bundle testings. J Mater Sci 19:3319–3324. https://doi.org/10.1007/BF00549820

    Article  Google Scholar 

  73. Estrada M, Linero DL, Ramírez F (2013) Constitutive relationship of the fiber cluster of bamboo Guadua angustifolia, determined by means of a Weibull probability function and a model of progressive failure. Mech Mater 63:12–20. https://doi.org/10.1016/j.mechmat.2013.04.007

    Article  Google Scholar 

  74. Ahmadi MV, Doostparast M, Ahmadi J (2013) Estimating the lifetime performance index with Weibull distribution based on progressive first-failure censoring scheme. J Comput Appl Math 239:93–102. https://doi.org/10.1016/j.cam.2012.09.006

    Article  MathSciNet  MATH  Google Scholar 

  75. Wolfenden A, van der Zwaag S (2009) The concept of filament strength and the Weibull modulus. J Test Eval 17:292. https://doi.org/10.1520/jte11131j

    Article  Google Scholar 

  76. Abernethy RB (2004) An overview of weibull analysis. New Weibull Handb. Reliab. Stat. Anal. Predict. Life, Safety, Surviv. Risk, Cost Warranty Claims.

  77. Park JM, Quang ST, Hwang BS, DeVries KL (2006) Interfacial evaluation of modified Jute and Hemp fibers/polypropylene (PP)-maleic anhydride polypropylene copolymers (PP-MAPP) composites using micromechanical technique and nondestructive acoustic emission. Compos Sci Technol 66:2686–2699. https://doi.org/10.1016/j.compscitech.2006.03.014

    Article  Google Scholar 

  78. Gorjan L, Ambrožič M (2012) Bend strength of alumina ceramics: a comparison of Weibull statistics with other statistics based on very large experimental data set. J Eur Ceram Soc 32:1221–1227. https://doi.org/10.1016/j.jeurceramsoc.2011.12.010

    Article  Google Scholar 

  79. Bergman B (1984) On the estimation of the Weibull modulus. J Mater Sci Lett 3:689–692. https://doi.org/10.1007/BF00719924

    Article  Google Scholar 

  80. Stawarczyk B, Özcan M, Trottmann A, Hämmerle CHF, Roos M (2012) Evaluation of flexural strength of hipped and presintered zirconia using different estimation methods of Weibull statistics. J Mech Behav Biomed Mater 10:227–234. https://doi.org/10.1016/j.jmbbm.2012.01.020

    Article  Google Scholar 

  81. Abbasi B, Niaki STA, Khalife MA, Faize Y (2011) A hybrid variable neighborhood search and simulated annealing algorithm to estimate the three parameters of the Weibull distribution. Expert Syst Appl 38:700–708. https://doi.org/10.1016/j.eswa.2010.07.022

    Article  Google Scholar 

  82. Gebizlioglu OL, Enolu B, Kantar YM (2011) Comparison of certain value-at-risk estimation methods for the two-parameter Weibull loss distribution. J Comput Appl Math 235:3304–3314. https://doi.org/10.1016/j.cam.2011.01.044

    Article  MathSciNet  MATH  Google Scholar 

  83. Ducros F, Pamphile P (2018) Bayesian estimation of Weibull mixture in heavily censored data setting. Reliab Eng Syst Saf. https://doi.org/10.1016/j.ress.2018.08.008

    Article  Google Scholar 

  84. Roos M, Stawarczyk B (2012) Evaluation of bond strength of resin cements using different general-purpose statistical software packages for two-parameter Weibull statistics. Dent Mater 28:e76–e88. https://doi.org/10.1016/j.dental.2012.04.013

    Article  Google Scholar 

  85. Gourier C, Le Duigou A, Bourmaud A, Baley C (2014) Mechanical analysis of elementary flax fibre tensile properties after different thermal cycles. Compos Part A Appl Sci Manuf 64:159–166. https://doi.org/10.1016/j.compositesa.2014.05.006

    Article  Google Scholar 

  86. Davies GC, Bruce DM (1998) Effect of environmental relative humidity and damage on the tensile properties of flax and nettle fibers. Text Res J 68:623–629. https://doi.org/10.1177/004051759806800901

    Article  Google Scholar 

  87. Hu W, Ton-That MT, Perrin-Sarazin F, Denault J (2010) An improved method for single fiber tensile test of natural fibers. Polym Eng Sci 50:819–825. https://doi.org/10.1002/pen.21593

    Article  Google Scholar 

  88. Joffe R, Andersons JA, Wallström L (2003) Strength and adhesion characteristics of elementary flax fibres with different surface treatments. Compos Part A Appl Sci Manuf 34:603–612. https://doi.org/10.1016/S1359-835X(03)00099-X

    Article  Google Scholar 

  89. Charlet K, Eve S, Jernot JP, Gomina M, Breard J (2009) Tensile deformation of a flax fiber. Procedia Eng 1:233–236. https://doi.org/10.1016/j.proeng.2009.06.055

    Article  Google Scholar 

  90. Alix S, Lebrun L, Marais S, Philippe E, Bourmaud A, Baley C et al (2012) Pectinase treatments on technical fibres of flax: effects on water sorption and mechanical properties. Carbohydr Polym 87:177–185. https://doi.org/10.1016/j.carbpol.2011.07.035

    Article  Google Scholar 

  91. Arbelaiz A, Cantero G, Fernández B, Mondragon I, Gañán P, Kenny JM (2005) Flax fiber surface modifications: effects on fiber physico mechanical and flax/polypropylene interface properties. Polym Compos 26:324–332. https://doi.org/10.1002/pc.20097

    Article  Google Scholar 

  92. Biagiotti J, Puglia D, Torre L, Kenny JM, Arbelaiz A, Cantero G et al (2004) A systematic investigation on the influence of the chemical treatment of natural fibers on the properties of their polymer matrix composites. Polym Compos 25:470–479. https://doi.org/10.1002/pc.20040

    Article  Google Scholar 

  93. Placet V, Trivaudey F, Cisse O, Gucheret-Retel V, Boubakar ML (2012) Diameter dependence of the apparent tensile modulus of hemp fibres: a morphological, structural or ultrastructural effect? Compos Part A Appl Sci Manuf 43:275–287. https://doi.org/10.1016/j.compositesa.2011.10.019

    Article  Google Scholar 

  94. Placet V, Cissé O, Lamine BM (2014) Nonlinear tensile behaviour of elementary hemp fibres. Part I: investigation of the possible origins using repeated progressive loading with in situ microscopic observations. Compos Part A Appl Sci Manuf 56:319–327. https://doi.org/10.1016/j.compositesa.2012.11.019

    Article  Google Scholar 

  95. Béakou A, Ntenga R, Lepetit J, Atéba JA, Ayina LO (2008) Physico-chemical and microstructural characterization of “Rhectophyllum camerunense” plant fiber. Compos Part A Appl Sci Manuf 39:67–74. https://doi.org/10.1016/j.compositesa.2007.09.002

    Article  Google Scholar 

  96. Quinn JB, Quinn GD (2010) A practical and systematic review of Weibull statistics for reporting strengths of dental materials. Dent Mater 26:135–147. https://doi.org/10.1016/j.dental.2009.09.006

    Article  Google Scholar 

  97. Amroune S, Bezazi A, Dufresne A, Scarpa F, Imad A (2019) Investigation of the date palm fiber for green composites reinforcement: thermo-physical and mechanical properties of the fiber. Journal of Natural Fibers. https://doi.org/10.1080/15440478.2019.1645791

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Belaadi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belaadi, A., Amroune, S. & Bourchak, M. Effect of eco-friendly chemical sodium bicarbonate treatment on the mechanical properties of flax fibres: Weibull statistics. Int J Adv Manuf Technol 106, 1753–1774 (2020). https://doi.org/10.1007/s00170-019-04628-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04628-8

Keywords

Navigation