Skip to main content

Advertisement

Log in

Influence of cooling water temperature on ME20M magnesium alloy submerged friction stir welding: a numerical and experimental study

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Submerged friction stir welding on magnesium (Mg) alloy is investigated with limits in the past. ME20M is an important lightweight Mg alloy with enhanced yield strength and heat resistance that merits further research. In this paper, submerged friction stir welding of ME20M Mg alloy was carried out in different temperatures of cooling water. Three-dimensional numerical was employed to analyze the thermal field under the same weld conditions, and the numerical predictions were compared with the experimental results. The macrostructure, microstructure, tensile properties, and hardness are tested. The results show that the numerical results and the experimental results exhibits the same trends. By increasing the cooling water temperature, the grain size of the weld nugget increased, the tensile strength of the joint decreased, and the microhardness of the weld joint decreased. The largest tensile strength was 170.5 MPa, which was ~ 71.04% of the base metal. The highest and the lowest hardness values of the weld joint were obtained at the cooling water temperature of 15 °C and 75 °C, respectively, in the weld nugget and heat-affected zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Michels W (2016) Magnesium alloys and their applications. Mater Technol. 13(3):121–122

    Article  Google Scholar 

  2. Lentz M, Klaus M, Coelho RS, Schaefer N, Schmack F, Reimers W, Clausen B (2014) Analysis of the deformation behavior of magnesium-rare earth alloys Mg-2 pct Mn-1 pct rare earth and Mg-5 pct Y-4 pct rare earth by in situ energy-dispersive X-ray synchrotron diffraction and elasto-plastic self-consistent modeling. Metall Mater Trans A 45(12):5721–5735

    Article  Google Scholar 

  3. Yu Y, He B, Jiang M, Lv Z, Man H (2016) Fatigue properties of welded butt joint and base metal of MB8 magnesium alloy [J]. China Welding 25(1):343–347

    Google Scholar 

  4. Dallmeier J, Huber O, Saage H, Eigenfeld K, Hilbig A (2014) Quasi-static and fatigue behavior of extruded ME21 and twin roll cast AZ31 magnesium sheet metals. Mater Sci Eng A 590(2):44–53

    Article  Google Scholar 

  5. Gall S, Coelho RS, Müller S, Reimers W (2013) Mechanical properties and forming behavior of extruded AZ31 and ME21 magnesium alloy sheets. Mater Sci Eng A 579:180–187

    Article  Google Scholar 

  6. Li X, Qi W (2013) Effect of initial texture on texture and microstructure evolution of ME20 Mg alloy subjected to hot rolling. Mater Sci Eng 560:321–331

    Article  Google Scholar 

  7. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R Rep 50(1-2):1–78

    Article  Google Scholar 

  8. Cao G, Zhang D, Chai F, Zhang W, Qiu C (2015) Superplastic behavior and microstructure evolution of a fine-grained Mg–Y–Nd alloy processed by submerged friction stir processing. Mater Sci Eng A 642:157–166

    Article  Google Scholar 

  9. Rao HM, Rodriguez RI, Jordon JB, Barkey ME, Guo YB, Badarinarayan H, Yuan W (2014) Friction stir spot welding of rare-earth containing ZEK100 magnesium alloy sheets. Mater Des 56(4):750–754

    Article  Google Scholar 

  10. Rodriguez RI, Jordon JB, Rao HM, Badarinarayan H, Yuan W, Kadiri HE, Allison PG (2014) Microstructure, texture, and mechanical properties of friction stir spot welded rare-earth containing ZEK100 magnesium alloy sheets. Mater Sci Eng A 618(10):637–644

    Article  Google Scholar 

  11. Carlone P, Astarita A, Rubino F, Pasquino N (2015) Microstructural aspects in FSW and TIG welding of cast ZE41A magnesium alloy. Metall Mater Trans B 47(2):1340–1346

    Article  Google Scholar 

  12. Carlone P, Palazzo GS (2015) Characterization of TIG and FSW weldings in cast ZE41A magnesium alloy. J Mater Process Technol 215:87–94

    Article  Google Scholar 

  13. Pan F, Xu A, Deng D, Ye J, Jiang X, Tang A, Ran Y (2016) Effects of friction stir welding on microstructure and mechanical properties of magnesium alloy Mg-5Al-3Sn. Mater Des 110:266–274

    Article  Google Scholar 

  14. Wang S, Zhang D (2011) Microstructure and mechanical properties of frictional stirring processing (FSP) MB8 magnesium alloy. Special-cast and Non-ferrous Alloys. 31(1):83–86

    Google Scholar 

  15. Xing L, Ke L, Sun D, Zhou X (2001) Friction-stir welding of MB8 magnesium alloy sheet. Trans China Weld Inst. 22(6):18–20

    Google Scholar 

  16. Xu W (2002) Friction stir welding of magnesium alloy MB8. J Mater Eng. 8:35–36

    Google Scholar 

  17. Darras B, Kishta E (2013) Submerged friction stir processing of AZ31 magnesium alloy. Mater Des 47(9):133–137

    Article  Google Scholar 

  18. Luo X, Cao G, Zhang W, Qiu C, Zhang D (2017) Ductility improvement of an AZ61 magnesium alloy through two-pass submerged friction stir processing. Materials 10(3):253

    Article  Google Scholar 

  19. Chai F, Zhang D, Li Y (2015) Microstructures and tensile properties of submerged friction stir processed AZ91 magnesium alloy. J Aeronaut Mater 3(3):203–209

    Google Scholar 

  20. Fu R, Sun Z, Sun R, Ying L, Liu H, Lei L (2011) Improvement of weld temperature distribution and mechanical properties of 7050 aluminum alloy butt joints by submerged friction stir welding. Mater Des 32(10):4825–4831

    Article  Google Scholar 

  21. Guerdoux S, Fourment L (2009) A 3D numerical simulation of different phases of friction stir welding. Modelling & Simulation in Materials Science & Engineering 17(7):075001

    Article  Google Scholar 

  22. Wen Q, Li W, Gao Y, Yang J, Wang F (2019) Numerical simulation and experimental investigation of band patterns in bobbin tool friction stir welding of aluminum alloy. Int J Adv Manuf Technol. 100:2679–2687

    Article  Google Scholar 

  23. Serindag HT, Kiral BG (2017) Friction stir welding of AZ31 magnesium alloys - a numerical and experimental study. Lat Am J Solids Struct. 14(1):113–130

    Article  Google Scholar 

  24. Asadi P, Besharati Givi MK, Akbari M (2016) Simulation of dynamic recrystallization process during friction stir welding of AZ91 magnesium alloy. Int J Adv Manuf Technol. 83:301–311

    Article  Google Scholar 

  25. Asadi P, Mahdavinejad RA, Tutunchilar S (2011) Simulation and experimental investigation of FSP of AZ91 magnesium alloy. Mater Sci Eng A. 528:6469–6477

    Article  Google Scholar 

  26. Ghetiya ND, Patel KM (2018) Numerical simulation on an effect of backing plates on joint temperature and weld quality in air and immersed FSW of AA2014-T6. Int J Adv Manuf Technol. 99(5-8):1937–1951

    Article  Google Scholar 

  27. Chen G, Ma Q, Zhang S, Wu J, Zhang G, Shi Q (2018) Computational fluid dynamics simulation of friction stir welding: a comparative study on different frictional boundary conditions. J Mater Sci Technol. 34:128–134

    Article  Google Scholar 

  28. Huang Y, Xie Y, Meng X, Lv Z, Cao J (2018) Numerical design of high depth-to-width ratio friction stir welding. J Mater Process Tech. 252:233–241

    Article  Google Scholar 

  29. Hamilton C, Dymek S, Sommers A (2008) A thermal model of friction stir welding in aluminum alloys. Int J Mach Tool Manuf. 48(10):1120–1130

    Article  Google Scholar 

  30. Zhang J, Shen Y, Li B, Xu H, Yao X, Kuang B, Gao J (2014) Numerical simulation and experimental investigation on friction stir welding of 6061-T6 aluminum alloy. Mater Des. 60:94–101

    Article  Google Scholar 

  31. Schmidt H, Hattel J, Wert J (2004) An analytical model for the heat generation in friction stir welding. Model Simul Mater Sci Eng 12(1):143–157

    Article  Google Scholar 

  32. Neto DM, Neto P (2013) Numerical modeling of friction stir welding process: a literature review [J]. Int J Adv Manuf Technol 65(1-4):115–126

    Article  Google Scholar 

  33. Huang Y, Xie Y, Meng X, Li J, Zhou L (2019) Joint formation mechanism of high depth-to-width ratio friction stir welding. J Mater Sci Technol 35:1261–1269

    Article  Google Scholar 

  34. Su H, Wu CS, Pittner A, Rethmeier M (2014) Thermal energy generation and distribution in friction stir welding of aluminum alloys. Energy 77:720–731

    Article  Google Scholar 

  35. Riahi M, Nazari H (2011) Analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 6061-T6 via numerical simulation. Int J Adv Manuf Technol 55:143–152

    Article  Google Scholar 

  36. Ghetiya ND, Patel KM, Anup BP (2015) Prediction of temperature at weldline in air and immersed friction stir welding and its experimental validation. Int J Adv Manuf Technol 79:1239–1246

    Article  Google Scholar 

  37. Hajinezhad M, Azizi A (2016) Numerical analysis of effect of coolant on the transient temperature in underwater friction stir welding of Al6061-T6. Int J Adv Manuf Technol 83(5-8):1241–1252

    Article  Google Scholar 

  38. Kim YG, Fujii H, Tsumura T, Komazaki T, Nakata K (2006) Three defect types in friction stir welding of aluminum die casting alloy. Mater Sci Eng A. 415(1-2):250–254

    Article  Google Scholar 

  39. Zhang HJ, Liu HJ, Yu L (2011) Effect of water cooling on the performances of friction stir welding heat-affected zone. J Mater Eng Perform. 21(7):1182–1187

    Article  Google Scholar 

  40. Pekguleryuz M, Kainer K, Kaya A A. (2013). Fundamentals of magnesium alloy metallurgy. index. 357-368.

    Book  Google Scholar 

  41. Kabir ASH, Sanjari M, Su J, Jung I-H, Yue S (2014) Effect of strain-induced precipitation on dynamic recrystallization in Mg–Al–Sn alloys. Mater Sci Eng A. 616:252–259

    Article  Google Scholar 

  42. Robson JD, Henry DT, Davis B (2011) Particle effects on recrystallization in magnesium–manganese alloys: particle pinning. Mater Sci Eng A 528(12):4239–4247

    Article  Google Scholar 

  43. Shi G, Zhang D, Zhao X, Zhang K, Li X, Li Y, Ma M (2013) Precipitate evolution in Mg-6 wt% Zn-1 wt% Mn alloy. Rare Metal Mater Eng 42(12):2447–2452

    Article  Google Scholar 

  44. Santos TG, Miranda RM, Vilaça P (2014) Friction stir welding assisted by electrical Joule effect. J Mater Process Technol. 214(10):2127–2133

    Article  Google Scholar 

  45. Cao X, Jahazi M (2009) Effect of welding speed on the quality of friction stir welded butt joints of a magnesium alloy. Mater Des. 30(6):2033–2042

    Article  Google Scholar 

  46. Hu Z, Dai M, Pang Q (2018) Influence of welding combined plastic forming on microstructure stability and mechanical properties of friction stir-welded Al-Cu alloy. J Mater Eng Perf. 27:4036–4042

    Article  Google Scholar 

  47. Chen Y, He C, Yang K, Zhang H, Wang C, Wang Q, Liu Y (2019) Effects of microstructural inhomogeneities and micro-defects on tensile and very high cycle fatigue behaviors of the friction stir welded ZK60 magnesium alloy joint. Int J Fatigue. 122:218–227

    Article  Google Scholar 

  48. Wang Y, Huang Y, Meng X, Wan L, Feng J (2017) Microstructural evolution and mechanical properties of Mg-Zn-Y-Zr alloy during friction stir processing. J Alloys Compd 696:875–883

    Article  Google Scholar 

  49. Fu R, Sun Z, Sun R, Li Y, Liu H, Liu L (2011) Improvement of weld temperature distribution and mechanical properties of 7050 aluminum alloy butt joints by submerged friction stir welding. Mater Des 32:4825–4483

    Article  Google Scholar 

  50. Vijayakumar S, Balaji J, Ramesh S, Prince J, L. L. (2019) Assessment of microstructure and mechanical properties of stir zone seam of friction stir welded magnesium AZ31B through Nano-SiC. Mater. 12:1044

    Article  Google Scholar 

  51. Hartt WH, Reed-Hill RE (1968) Internal deformation and fracture of second-order {1011}−{1012} twins in magnesium. Trans. Metall. Soc. AIME 242:1127–1132

    Google Scholar 

Download references

Funding

The study work of this paper is supported by the National Natural Science Foundation of China (Grant No. 51475232).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifu Shen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Yan, Y., Sun, T. et al. Influence of cooling water temperature on ME20M magnesium alloy submerged friction stir welding: a numerical and experimental study. Int J Adv Manuf Technol 105, 5203–5215 (2019). https://doi.org/10.1007/s00170-019-04496-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04496-2

Keywords

Navigation