Skip to main content
Log in

Parameter analysis of thermal behavior during laser melting of Ti-6Al-4V alloy powder

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The additive manufacturing temperature field of Ti-6Al-4V powder laser melting (LM) with a direct-diode laser source is simulated by the finite element method (FEM). How the laser power and scanning velocity affect the thermal behavior of LM is discussed. The results show that the cooling rate of the molten bath increases from 88.7 to 103.3 °C/s when the laser power rises from 3000 to 3500 W. However, when the laser moving velocity rises from 3 to 7 mm/s, the cooling rate drops from 95.8 to 74.3 °C/s. When both the low laser power (3250 W) and high laser moving velocity (7 mm/s) are chosen, the low temperatures (1408 °C) and very short liquid-phase life are produced, resulting in poor wettability of the molten pool and micropores in the parts. The bath depth rises from 1.7 to 4 mm when the laser power increases from 3000 to 3500 W. As the laser moving velocity increases from 3 to 7 mm/s, the bath depth is reduced from 4.1 to 1.9 mm. When the laser power is equal to 3500 W and the laser moving velocity is 5 mm/s, the bath with a width of 6.5 mm and a depth of 4 mm is successfully achieved. At the same time, the laser cladding Ti-6Al-4V alloy experiment is performed with the same process parameters as the simulation process. The sample microstructure from the experiment is studied and the results show that the simulation model is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lee CS, Lee SB, Kim JS, Chang YW (2000) Mechanical and microstructural analysis on the superplastic deformation behavior of Ti-6Al-4V alloy. Int J Mech Sci 42:1555–1569

    Article  Google Scholar 

  2. Song B, Dong SJ, Liao HL (2012) Process parameter selection for selective laser melting of Ti6Al4V based on temperature distribution simulation and experimental sintering. Int J Adv Manuf Technol 61:967–974

    Article  Google Scholar 

  3. Bao ZQ, Hu XT, Song YD (2015) Effect of foreign object damage at different impact angles on high cycle fatigue strength of TC4 titanium alloys. J Aerosp Power 30:2226–2233

    Google Scholar 

  4. Riedlbauer D, Scharowsky T, Singer RF, Steinmann P, Korner C, Mergheim J, Mergheim J (2017) Macroscopic simulation and experimental measurement of melt pool characteristics in selective electron beam melting of Ti-6Al-4V. Int J Adv Manuf Technol 88:1309–1317

    Article  Google Scholar 

  5. Zeng SW, Jiang HT, Jiang AM (2015) High temperature oxidation behavior of TC4 alloy. Rare Metal Mater Eng 44:2812–2816

    Google Scholar 

  6. Li Y, Gu D (2014) Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Mater Des 63:856–867

    Article  Google Scholar 

  7. Wen P, Feng Z, Zheng S (2015) Formation quality optimization of laser hot wire cladding for repairing martensite precipitation hardening stainless steel. Opt Laser Technol 65:180–188

    Article  Google Scholar 

  8. Lee HK (2008) Effects of the cladding parameters on the deposition efficiency in pulsed Nd:YAG laser cladding. J Mater Process Technol 202:321–327

    Article  Google Scholar 

  9. Blomqvist M, Campbell S, Latokartano J, Tuominen J (2012) Multi-kW laser cladding using cylindrical collimators and square-formed fibers. Proc SPIE 8239:82390L–82390L-10

    Article  Google Scholar 

  10. Timmermann A, Meinschien J, Bruns P, Burke C, Bartoschewski D (2008) Next generation high-brightness diode lasers offer new industrial applications. Proc SPIE 6876:68760 U

    Article  Google Scholar 

  11. Bachmann F, Poprawe R, Loosen P (2007) High power diode lasers [M]. Springer, New York

  12. Kubacki F, Weitze H (2007) Successful diode laser material processing using application specific micro-optical beam shaping. Proc SPIE 6824:682403

    Article  Google Scholar 

  13. Zhu H, Hao M, Zhang J, Ji W, Lin X, Zhang J, Ning Y (2016) Development and thermal management of 10 kW CW, direct diode laser source. Opt Laser Technol 76:101–105

    Article  Google Scholar 

  14. Marzban J, Ghaseminejad P, Ahmadzadeh MH, Teimouri R (2015) Experimental investigation and statistical optimization of laser surface cladding parameters. Int J Adv Manuf Technol 76:1165–1172

    Article  Google Scholar 

  15. Simchi A (2006) Direct laser sintering of metal powders: mechanism, kinetics and microstructural features. Mat Sci Eng A-Struct 428:148–158

    Article  Google Scholar 

  16. Fischer P, Romano V, Weber HP, Karapatis NP, Boillat E, Glardon R (2003) Sintering of commercially pure titanium powder with a Nd:YAG laser source. Acta Mater 51:1651–1662

    Article  Google Scholar 

  17. Gu DD, Wang HQ, Zhang GQ (2014) Selective laser melting additive manufacturing of Ti-based nanocomposites: the role of nanopowder. Metall Mater Trans A 45:464–476

    Article  Google Scholar 

  18. Das M, Balla VK, Basu D, Bose S, Bandyopadhyay A (2010) Laser processing of SiC-particle-reinforced coating on titanium. Scr Mater 63:438–441

    Article  Google Scholar 

  19. Hofman JT, De Lange DF, Pathiraj B, Meijer J (2011) FEM modeling and experimental verification for dilution control in laser cladding. J Mater Process Technol 211:187–196

    Article  Google Scholar 

  20. Toyserkani E, Khajepour A, Corbin S (2004) 3⁃D finite element modeling of laser cladding by power injection: effects of laser pulse shaping on the process. Opt Lasers Eng 41:849–867

    Article  Google Scholar 

  21. Zhu GX, Zhang AF, Li DC, Tang YP, Tong ZQ, Lu QP (2011) Numerical simulation of thermal behavior during laser direct metal deposition. Int J Adv Manuf Technol 55:945–954

    Article  Google Scholar 

  22. Sowdari D, Majumdar P (2010) Finite element analysis of laser irradiated metal heating and melting processes. Opt Laser Technol 42:855–865

    Article  Google Scholar 

  23. Shuja SZ, Yilbas BS, Momin O (2011) Laser heating of a moving slab: Influence of laser intensity parameter and scanning speed on temperature field and melt size. Opt Lasers Eng 49:265–272

    Article  Google Scholar 

  24. Roberts IA, Wang CJ, Esterlein R, Stanford M, Mynors DJ (2009) A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing. Int J Mach Tools Manuf 49:916–923

    Article  Google Scholar 

  25. Fayaz G, Kazemzadeh S (2018) Towards additive manufacturing of compressor impellers: 3D modeling of multilayer laser solid freeform fabrication of nickel alloy 625 powder mixed with nano-CeO2 on AISI 4140. Add Manu 20:182–188.

    Article  Google Scholar 

  26. Farahmand P, Kovacevic R (2014) An experimental–numerical investigation of heat distribution and stress field in single- and multi-track laser cladding by a high-power direct diode laser. Opt Laser Technol 63:154–168

    Article  Google Scholar 

  27. Liu H, Qin X, Huang S, Hu Z, Ni M (2018) Geometry modeling of single track cladding deposited by high power diode laser with rectangular beam spot. Opt Lasers Eng 100:38–46

    Article  Google Scholar 

  28. Li L (2000) The advances and characteristics of high-power diode laser materials processing. Opt Lasers Eng 34:231–253

    Article  Google Scholar 

  29. Wen SY, Shin YC (2011) Modeling of the off-axis high power diode laser cladding process. J Heat Transf 133:174–194

    Article  Google Scholar 

  30. González-Fernández L, Risueño E, Pérez-Sáez RB (2012) Infrared normal spectral emissivity of Ti–6Al–4V alloy in the 541:500–1150 K temperature range [J]. J Alloy Compd 541:144–149

  31. Capello E, Castelnuovo M, Previtali B, Vedani M (2007) Surface treatment of welded duplex stainless steels by diode laser. J Laser Appl 19:133–140

    Article  Google Scholar 

  32. Alimardani M, Toyserkani E, Huissoon JP, Paul CP (2009) On the delamination and crack formation in a thin wall fabricated using laser solid freeform fabrication process: an experimental–numerical investigation. Opt Lasers Eng 47:1160–1168

    Article  Google Scholar 

  33. Zheng B, Zhou Y, Smugeresky JE, Schoenung JM, Lavernia EJ (2008) Thermal behavior and microstructural evolution during laser deposition with laser-engineered net shaping: Part I. Numerical calculations. Metall Mater Trans A 39:2228–2236

    Article  Google Scholar 

  34. Yadroitsev I, Gusarov A, Yadroitsava I, Smurov I (2010) Single track formation in selective laser melting of metal powders. J Mater Process Technol 210:1624–1631

    Article  Google Scholar 

  35. Gu DD, Hagedorn YC, Meiners W, Meng GB, Batista RJS, Wissenbach K (2012) Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater 60:3849–3860

    Article  Google Scholar 

  36. Gu DD, Shen YF (2009) Balling phenomena in direct laser sintering of stainless steel powder: metallurgical mechanisms and control methods. Mater Des 30:2903–2910

    Article  Google Scholar 

  37. Simchi A, Pohl H (2003) Effects of laser sintering processing parameters on the microstructure and densification of iron powder. Mater Sci Eng A 359:119–128

    Article  Google Scholar 

  38. Yadroitsev I, Bertrand P, Smurov I (2007) Parametric analysis of the selective laser melting process. Appl Surf Sci 253:8064–8069

    Article  Google Scholar 

Download references

Funding

This work is sponsored by National Science Funds of China (No. U1633104). It is also supported in part by the Open Funds of State Key Lab of Digital Manufacturing Equipment & Technology of China (No. DMETKF2017018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Lingchao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, W., Lingchao, Q. & Jiaqi, L. Parameter analysis of thermal behavior during laser melting of Ti-6Al-4V alloy powder. Int J Adv Manuf Technol 104, 2875–2885 (2019). https://doi.org/10.1007/s00170-019-04060-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04060-y

Keywords

Navigation