Skip to main content
Log in

On-machine surface measurement and applications for ultra-precision machining: a state-of-the-art review

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Surface measurement is essential to enhance accuracy and efficiency in ultra-precision machining. In order to increase the measurement availability and efficiency, offline lab-based solutions are shifting towards the use of surface metrology upon manufacturing platforms. With the lack of remounting errors, on-machine surface measurement (OMSM) allows the deterministic assessment of manufactured surfaces just-in-time and also provides valuable feedback to the process control of ultra-precision machining. This paper is aimed at reviewing the state-of-the-art OMSM and applications in the ultra-precision machining process. The benefits and considerations on the integration of metrology are discussed. The merits and limitations among different OMSM types are compared as well. Finally, the challenges and outlook of the ultra-precision machining-metrology integration are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Brinksmeier E, Gläbe R, Schönemann L (2012) Review on diamond-machining processes for the generation of functional surface structures. CIRP J Manuf Sci Technol 5(1):1–7

    Article  Google Scholar 

  2. Yu DP, Gan SW, Wong SY, Hong GS, Rahman M, Yao J (2012) Optimized tool path generation for fast tool servo diamond turning of micro-structured surfaces. Int J Adv Manuf Technol 63(9–12):1137–1152

    Article  Google Scholar 

  3. Ramesh R, Mannan M, Poo A (2000) Error compensation in machine tools—a review: part I: geometric, cutting-force induced and fixture-dependent errors. Int J Mach Tools Manuf 40(9):1235–1256

    Article  Google Scholar 

  4. Ramesh R, Mannan M, Poo A (2000) Error compensation in machine tools—a review: Part II: thermal errors. Int J Mach Tools Manuf 40(9):1257–1284

    Article  Google Scholar 

  5. Schwenke H, Knapp W, Haitjema H, Weckenmann A, Schmitt R, Delbressine F (2008) Geometric error measurement and compensation of machines—an update. CIRP Ann Manuf Technol 57(2):660–675

    Article  Google Scholar 

  6. Jiang X (2012) Precision surface measurement. Philos Trans R Soc London, Ser A 370(1973):4089–4114

    Article  Google Scholar 

  7. Jiang X, Scott P, Whitehouse D (2007) Freeform surface characterisation-a fresh strategy. CIRP Ann Manuf Technol 56(1):553–556

    Article  Google Scholar 

  8. Jiang XJ, Whitehouse DJ (2012) Technological shifts in surface metrology. CIRP Ann Manuf Technol 61(2):815–836

    Article  Google Scholar 

  9. Jiang X, Scott PJ, Whitehouse DJ, Blunt L Paradigm shifts in surface metrology. Part I. Historical philosophy. In: Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, 2007, vol 2085. The Royal Society, London, pp 2049–2070

  10. Jiang X, Scott PJ, Whitehouse DJ, Blunt L Paradigm shifts in surface metrology. Part II. The current shift. In: Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, 2007, vol 2085. The Royal Society, London, pp 2071–2099

  11. Walker D, Beaucamp A, Doubrovski V, Dunn C, Evans R, Freeman R, Kelchner J, McCavana G, Mortonb R, Riley D (2006) Automated optical fabrications: first results from the new precessions 1.2 m CNC polishing machine. Proc SPIE:627309

  12. Elrawemi M, Blunt L, Muhamedsalih H, Gao F, Fleming L (2015) Implementation of in process surface metrology for R2R flexible PV barrier films. Int J Autom Technol 9(3):312–321

    Article  Google Scholar 

  13. Zhang X, Zeng Z, Liu X, Fang F (2015) Compensation strategy for machining optical freeform surfaces by the combined on-and off-machine measurement. Opt Express 23(19):24800–24810

    Article  Google Scholar 

  14. Fang FZ, Zhang XD, Weckenmann A, Zhang GX, Evans C (2013) Manufacturing and measurement of freeform optics. CIRP Ann Manuf Technol 62(2):823–846

    Article  Google Scholar 

  15. Hansen HN, Carneiro K, Haitjema H, De Chiffre L (2006) Dimensional micro and nano metrology. CIRP Ann Manuf Technol 55(2):721–743

    Article  Google Scholar 

  16. Shore P, Parr-Burman P (2004) Manufacture of large mirrors for ELTs: a fresh perspective. In: Optical systems design. International Society for Optics and Photonics, Bellingham, pp 55–62

    Google Scholar 

  17. Vacharanukul K, Mekid S (2005) In-process dimensional inspection sensors. Measurement 38(3):204–218

    Article  Google Scholar 

  18. Novak E (2014) Advanced defect and metrology solutions. In: SPIE sensing technology+ applications. International Society for Optics and Photonics, Bellingham, p 91100G-91100G-91108

    Google Scholar 

  19. Li D, Tong Z, Jiang X, Blunt L, Gao F (2018) Calibration of an interferometric on-machine probing system on an ultra-precision turning machine. Measurement 118:96–104

    Article  Google Scholar 

  20. Li D, Jiang X, Tong Z, Blunt L (2018) Kinematics error compensation for a surface measurement probe on an ultra-precision turning machine. Micromachines 9(7):334

    Article  Google Scholar 

  21. Gao W, Kiyono S (1997) On-machine roundness measurement of cylindrical workpieces by the combined three-point method. Measurement 21(4):147–156

    Article  Google Scholar 

  22. Gao W, Yokoyama J, Kojima H, Kiyono S (2002) Precision measurement of cylinder straightness using a scanning multi-probe system. Precis Eng 26(3):279–288

    Article  Google Scholar 

  23. Shibuya A, Arai Y, Yoshikawa Y, Gao W, Nagaike Y, Nakamura Y (2010) A spiral scanning probe system for micro-aspheric surface profile measurement. Int J Adv Manuf Technol 46(9–12):845–862

    Article  Google Scholar 

  24. Giusca CL, Leach RK, Helery F (2012) Calibration of the scales of areal surface topography measuring instruments: part 2. Amplification, linearity and squareness. Meas Sci Technol 23(6):065005

    Article  Google Scholar 

  25. Blunt L, Jiang X (2003) Advanced techniques for assessment surface topography: development of a basis for 3D surface texture standards “surfstand”. Elsevier, Amsterdam

    Google Scholar 

  26. Suzuki H, Onishi T, Moriwaki T, Fukuta M, Sugawara J (2008) Development of a 45° tilted on-machine measuring system for small optical parts. CIRP Ann Manuf Technol 57(1):411–414

    Article  Google Scholar 

  27. Chen F, Yin S, Huang H, Ohmori H, Wang Y, Fan Y, Zhu Y (2010) Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement. Int J Mach Tools Manuf 50(5):480–486

    Article  Google Scholar 

  28. Moore nanotechnology and systems (2017) http://www.nanotechsys.com/accessories/nanotech-250uplv2-additional-accessories/

  29. Gao W, Aoki J, Ju B-F, Kiyono S (2007) Surface profile measurement of a sinusoidal grid using an atomic force microscope on a diamond turning machine. Precis Eng 31(3):304–309

    Article  Google Scholar 

  30. Ju B-F, Chen Y-L, Ge Y (2011) The art of electrochemical etching for preparing tungsten probes with controllable tip profile and characteristic parameters. Rev Sci Instrum 82(1):013707

    Article  Google Scholar 

  31. Zhu W-L, Yang S, Ju B-F, Jiang J, Sun A (2016) Scanning tunneling microscopy-based on-machine measurement for diamond fly cutting of micro-structured surfaces. Precis Eng 43:308–314

    Article  Google Scholar 

  32. Zhu W-L, Yang S, Ju B-F, Jiang J, Sun A (2015) On-machine measurement of a slow slide servo diamond-machined 3D microstructure with a curved substrate. Meas Sci Technol 26(7):075003

    Article  Google Scholar 

  33. Noh YJ, Arai Y, Gao W (2009) Improvement of a fast tool control unit for cutting force measurement in diamond turning of micro-lens array. Int J Surf Sci Eng 3(3):227–241

    Article  Google Scholar 

  34. Lee K, Noh Y, Arai Y, Shimizu Y, Gao W (2011) Precision measurement of micro-lens profile by using a force-controlled diamond cutting tool on an ultra-precision lathe. International Journal of Precision Technology 2(2–3):211–225

    Article  Google Scholar 

  35. Chen Y-L, Wang S, Shimizu Y, Ito S, Gao W, Ju B-F (2015) An in-process measurement method for repair of defective microstructures by using a fast tool servo with a force sensor. Precis Eng 39:134–142

    Article  Google Scholar 

  36. Chen Y-L, Gao W, Ju B-F, Shimizu Y, Ito S (2014) A measurement method of cutting tool position for relay fabrication of microstructured surface. Meas Sci Technol 25(6):064018

    Article  Google Scholar 

  37. Nomura T, Kamiya K, Miyashiro H, Okuda S, Tashiro H, Yoshikawa K (1998) Shape measurements of mirror surfaces with a lateral-shearing interferometer during machine running. Precis Eng 22(4):185–189. https://doi.org/10.1016/S0141-6359(98)00010-5

    Article  Google Scholar 

  38. Shore P, Morantz P, Lee D, McKeown P (2006) Manufacturing and measurement of the MIRI spectrometer optics for the James Webb space telescope. CIRP Ann Manuf Technol 55(1):543–546

    Article  Google Scholar 

  39. Wyant JC (2003) Dynamic interferometry. Opt Photonics News 14(4):36–41

    Article  Google Scholar 

  40. King CW (2010) Integrated on-machine metrology systems. In: International symposium on ultraprecision engineering and nanotechnology (ISUPEN), Japan Society for Precision Engineering Semestrial Meeting 2010 JSPE Autumn Conference

  41. Williamson J, Martin H, Jiang X (2016) High resolution position measurement from dispersed reference interferometry using template matching. Opt Express 24(9):10103–10114

    Article  Google Scholar 

  42. Li D, Jiang X, Tong Z, Blunt L (2019) Development and application of interferometric on-machine surface measurement for ultraprecision turning process. J Manuf Sci Eng 141(1):014502

    Article  Google Scholar 

  43. Jiang X (2011) In situ real-time measurement for micro-structured surfaces. CIRP Ann Manuf Technol 60(1):563–566

    Article  Google Scholar 

  44. Muhamedsalih H (2013) Investigation of wavelength scanning interferometry for embedded metrology. University of Huddersfield, Huddersfield

    Google Scholar 

  45. Röttinger C, Faber C, Olesch E, Häusler G, Kurz M, Uhlmann E Deflectometry for ultra precision machining–measuring without Rechucking. In: Proc. DGaO, 2011. p P28

  46. Savio E, De Chiffre L, Schmitt R (2007) Metrology of freeform shaped parts. CIRP Ann Manuf Technol 56(2):810–835

    Article  Google Scholar 

  47. Zou X, Zhao X, Li G, Li Z, Sun T (2016) Non-contact on-machine measurement using a chromatic confocal probe for an ultra-precision turning machine. Int J Adv Manuf Technol:1–10

  48. Niehaus F, Huttenhuis S (2015) Danger T new opportunities in freeform manufacturing using a long stroke fast tool system and integrated metrology. In: Optifab 2015. International Society for Optics and Photonics, Bellingham, p 96331E

    Google Scholar 

  49. Innolite GmbH (2019) https://innolite.de/ultra-precision-machine-tools/

  50. Gao W, Tano M, Sato S, Kiyono S (2006) On-machine measurement of a cylindrical surface with sinusoidal micro-structures by an optical slope sensor. Precis Eng 30(3):274–279. https://doi.org/10.1016/j.precisioneng.2005.09.003

    Article  Google Scholar 

  51. Li D, Cheung CF, Ren M, Whitehouse D, Zhao X (2015) Disparity pattern-based autostereoscopic 3D metrology system for in situ measurement of microstructured surfaces. Opt Lett 40(22):5271–5274

    Article  Google Scholar 

  52. Leach R (2001) The measurement of surface texture using stylus instruments. National Physical Laboratory, Teddington

    Google Scholar 

  53. Zhang S, To S, Wang S, Zhu Z (2015) A review of surface roughness generation in ultra-precision machining. Int J Mach Tools Manuf 91:76–95

    Article  Google Scholar 

  54. Wang J, Jiang X, Blunt L, Leach RK, Scott PJ (2012) Intelligent sampling for the measurement of structured surfaces. Meas Sci Technol 23(8):085006

    Article  Google Scholar 

Download references

Acknowledgments

The authors also would like to sincerely thank the reviewers for their valuable comments on this work.

Funding

This work is supported by the UK’s Engineering and Physical Sciences Research Council (EPSRC) funding (Grant Ref: EP/P006930/1) and China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duo Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Wang, B., Tong, Z. et al. On-machine surface measurement and applications for ultra-precision machining: a state-of-the-art review. Int J Adv Manuf Technol 104, 831–847 (2019). https://doi.org/10.1007/s00170-019-03977-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03977-8

Keywords

Navigation