Skip to main content
Log in

NiMn-based Heusler magnetic shape memory alloys: a review

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The use of magnetic shape memory alloys (MSMAs) in manufacturing industry has increased significantly in recent years. This is mainly due to their great interest in their potential applications in smart devices, because of the reversible distortions suffered. The well-known example of these combinations is the Heusler type. A review is given of experimental works concerning the examination of magnetic field, structural phase transitions, and the magnetocaloric impact in Heusler Ni–Mn–X (X = In, Sn, Sb) and Ni–Co–Mn–Y (Y = In, Sn, Sb) alloys. This type of compounds has excellent properties, for example, the presence of coupled magnetostructural (coïncident magnetic and martensitic transitions) and metamagnetostructural phase transitions (coïncident metamagnetic (ferromagnetic-antiferromagnetic) and martensitic transitions), the magnetocaloric impact (MC), and the large magnetoresistance change (MR). The conceivable difficulties and remaining problems are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perez-Landazabal JI, Recarte V, Sanchez-Alarcos V, Gomez-Polo C, Cesari E (2013) Magnetic properties of the martensitic phase in Ni-Mn-In-Co metamagnetic shape memory alloys. J Appl Phys Lett 102:101908

    Article  Google Scholar 

  2. Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K (2006) Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439:957–960

    Article  Google Scholar 

  3. Yu SY, Cao ZX, Ma L, Liu GD, Chen JL, Wu GH, Zhang B, Zhang XX (2007) Realization of magnetic field-induced reversible martensitic transformation in NiCoMnGa alloys. J Appl Phys Lett 91:102507

    Article  Google Scholar 

  4. Liu ZH, Liu H, Zhang XX, Zhang XK, Xiao JQ, Zhu ZY, Dai XF, Liu GD, Chen JL, Wu GH (2005) Large negative magnetoresistance in quaternary Heusler alloy Ni50Mn8Fe17Ga25 melt-spun ribbons. J Appl Phys Lett 86:182507

    Article  Google Scholar 

  5. Liu J, Gottschall T, Skokov KP, Moore JD, Gutfleisch O (2012) Giant magnetocaloric effect driven by structural transitions. Nat Mater 11:620–626

    Article  Google Scholar 

  6. Du J, Zheng Q, Ren WJ, Feng WJ, Liu XG, Zhang ZD (2007) Magnetocaloric effect and magnetic-field-induced shape recovery effect at room temperature in ferromagnetic Heusler alloy Ni-Mn-Sb. J Phys D Appl Phys 40:5523–5526

    Article  Google Scholar 

  7. Marioni MA, O’Handley ROC, Allen SM, Hall SR, Paul DJ, Richard ML (2005) The ferromagnetic shape memory effect in Ni-Mn-Ga. J Magn Magn Mater 290:35

    Article  Google Scholar 

  8. Brown GV (1976) Magnetic heat pumping near room temperature. J Appl Phys 47:3673–3680

    Article  Google Scholar 

  9. Pecharsky VK, Gschneider KA (2006) Magnetic refrigeration. Int J Refrig 29:1239–1249

    Article  Google Scholar 

  10. Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50:511–678

    Article  Google Scholar 

  11. Oliveira JP, Miranda RM, Braz Fernandes FM (2017) Welding and joining of NiTi shape memory alloys: a review. Prog Mater Sci 88:412–466. https://doi.org/10.1016/j.pmatsci.2017.04.008

    Article  Google Scholar 

  12. Smart materials and structures. By M. V. Gandhi and B. S. Thompson, Chapman and Hall, London 1992, 310 pp., hardback, ISBN 0-412-37010-7. Adv Mater, 5: 313-314. https://doi.org/10.1002/adma.19930050427

  13. Heusler F, Stark W, Haupt E (1903) Über magnetische manganlegierungen. Verhandlungen der Deutschen Physikalischen Gesellschaft 5

  14. Heusler F, Richarz F (1909) Studien über magnetisierbare manganlegierungen. Z Anorg Chem 61:265–279

    Article  Google Scholar 

  15. Bradley AJ, Rodgers JW (1934) The crystal structure of the Heusler alloys. Proceedigs of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 50:2024–2027.https://doi.org/10.1098/rspa.1934.0053

  16. Groot RA, Mueller FM, PGV E, Buschow KHJ (1983) New class of materials: half-metallic ferromagnets. Phys Rev Lett 50:2024–2027

    Article  Google Scholar 

  17. Graf T, Felser C, Parkin SSP (2011) Simple rules for the understanding of Heusler compounds. Prog Solid State Chem 39:1–50

    Article  Google Scholar 

  18. Wang CW, Wang JM, Jiang CB (2013) A linear elastic Ni50Mn25Ga9Cu16 martensitic alloy. Rare Metals 32:29–32

    Article  Google Scholar 

  19. Trudel S, Gaier O, Hamrle J, Hillebrands B (2010) Magnetic anisotropy, exchange and damping in cobalt-based full-Heusler compounds: an experimental review. J Phys D Appl Phys 43:193001

    Article  Google Scholar 

  20. Kreiner G, Kalache A, Hausdorf S, Alijani V, Qian JF, Shan G, Burkhardt U, Ouardi S, Felser C (2014) New Mn2-based Heusler compounds. Z Anorg Allg Chem 640:738–752

    Article  Google Scholar 

  21. Louidi S, Suñol JJ, Bachaga T, González-Legarreta L, Rosa WO, Hernando B (2014) Thermomagnetic and structural analysis of as-quenched Ni49Co1Mn37Sn13. Phys Status Solidi C 11:1116–1119. https://doi.org/10.1002/pssc.201300700

    Article  Google Scholar 

  22. Liu G, Dai X, Liu H, Chen J, Li Y, Xiao G, Wu G (2008) Mn2CoZ (Z = Al, Ga, In, Si, Ge, Sn, Sb) compounds: structural, electronic, and magnetic properties. Phys Rev B 77:014424

    Article  Google Scholar 

  23. Dikshtein I, Koledov V, Shavrov V, Tulaikova A, Cherechukin A, Buchelnikov V, Khovailo V, Matsumoto M, Takagi T, Tani J (1999) Phase transitions in intermetallic compounds Ni-Mn-Ga with shape memory effect. IEEE Trans Magn 35:3811–3813

    Article  Google Scholar 

  24. Dai XF, Wang HY, Chen LJ, Duan XF, Chen JL, Wu GH, Zhu H, Xiao JQ (2006) Growth and characterization of ferromagnetic shape memory alloy Co50Ni20FeGa29 single crystals. J Cryst Growth 290:626–630

    Article  Google Scholar 

  25. Peterson BW, Allen SM, O’Handley RC (2008) Temperature dependence of the magnetic-field-induced strain of NiMnGa in the presence of an acoustic drive. J Appl Phys 104:033918

    Article  Google Scholar 

  26. Bachaga T, Daly R, Khitouni M, Escoda L, Saurina J, Suñol JJ (2015) Thermal and structural analysis of Mn49.3Ni43.7Sn7.0 Heusler Alloy Ribbons. Entropy 17:646–657

    Article  Google Scholar 

  27. Liu J, Scheerbaum N, Hinz D, Gutfleisch O (2008) Magnetostructural transformation in Ni-Mn-In-Co ribbons. J Appl Phys Lett 92:162509

    Article  Google Scholar 

  28. Rekik H, Chemingui M, Bachaga T, Cherif A, Bruna P, Sunol JJ and Khitouni M (2015) Structure and Mössbauer analysis of melt-spun Fe-Pd ribbons containing Ni and Co. Metals, 1020-1028. https://doi.org/10.3390/met5021020

  29. Pons J, Segui C, Chernenko VA, Cesari E, Ochin P, Portier R (1999) Transformation and ageing behaviour of melt-spun Ni-Mn-Ga shape memory alloys. Mater Sci Eng A 273:315–319

    Article  Google Scholar 

  30. Ullakko K, Huang JK, Kantner C, O'Handley RC, Kokorin VV (1996) Large magnetic-field-induced strains in Ni2MnGa single crystals. J Appl Phys Lett 69:1966–1968

    Article  Google Scholar 

  31. Ranjan R, Banik S, Barman SR, Kumar U, Mukhopadhyay PK, Pandey D (2006) Powder x-ray diffraction study of the thermoelastic martensitic transition in Ni2Mn1.05Ga0.95. Phys Rev B 74:224443

    Article  Google Scholar 

  32. Dikshtein I, Koledov V, Shavrov V, Tulaikova A, Cherechukin A (1999) Phase transitions in intermetallic compounds Ni-Mn-Ga with shape memory effect. IEEE Trans Magn 35:3811–3813

    Article  Google Scholar 

  33. Acet M, Mañosa L, Planes A (2011) Magnetic-field-induced effects in martensitic Heusler-based magnetic shape memory alloys. K. H. J. Buschow (Ed.). Handb Magn Mater 19:231

    Article  Google Scholar 

  34. Khovaylo VV, Buchelnikov VD, Kainuma R, Koledov VV, Ohtsuka M, Shavrov VG, Takagi T, Taskaev SV, Vasiliev AN (2005) Phase transitions in Ni2 + xMn1 + xGa with a high Ni excess. Phys Rev B 72:224408

    Article  Google Scholar 

  35. Aksoy S, Krenke T, Acet M, Wassermann EF, Moya X, Mañosa L, Planes A (2007) Magnetization easy axis in martensitic Heusler alloys estimated by strain measurements under magnetic field. J Appl Phys Lett 91:251915

    Article  Google Scholar 

  36. Planes A, Mañosa L, Acet M (2009) Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys. J Phys Condens Matter 21:233201

    Article  Google Scholar 

  37. Krenke T, Acet M, Wassermann E, Moya X, Manosa L, Planes A (2005) Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni-Mn-Sn alloys. Phys Rev B 72:014412

    Article  Google Scholar 

  38. Krenke T, Acet M, Wassermann E, Moya X, Manosa L, Planes A (2006) Ferromagnetism in the austenitic and martensitic states of Ni-Mn-In alloys. Phys Rev B 73:174413

    Article  Google Scholar 

  39. Wang HF, Wang JM, Jiang CB, Xu HB (2014) Phase transition and mechanical properties of Ni30Cu20Mn37+xGa13–x(x = 0–4.5) alloys. Rare Metals 33:547–551

    Article  Google Scholar 

  40. Li Z, Jing C, Zhang HL, Qiao YF, Cao SX, Zhang JC, Sun L (2009) A considerable metamagnetic shape memory effect without any prestrain in Ni46Cu4Mn38Sn12 Heusler alloy. J Appl Phys 106:083908

    Article  Google Scholar 

  41. Takenaga T, Hayashi K, Kajitani T (2007) Structural and magnetic transition temperatures of full Heusler Ni-Mn-Sn alloys determined by Van der Pauw method. J Chem Eng Jpn 40:1328–1329

    Article  Google Scholar 

  42. Hernando B, Sánchez Llamazares JL, Santos JD, Sánchez ML, Ll E, Suñol JJ, Varga R, García C, González J (2009) Grain oriented NiMnSn and NiMnIn Heusler alloys ribbons produced by melt spinning: martensitic transformation and magnetic properties. J Magn Magn Mater 321:763–768

    Article  Google Scholar 

  43. Bachaga T, Rekik H, Krifa M, Sunol JJ, Khitouni M (2016) Investigation of the enthalpy/entropy variation and structure of Ni–Mn–Sn(Co, In) melt-spun alloys. J Therm Anal Calorim https://doi.org/10.1007/s10973-016-5716-z

  44. Coll R, Saurina J, Escoda L, Sunol JJ (2018) Thermal analysis of Mn50Ni50−x(Sn, In)x Heusler shape memory alloys. J Therm Anal Calorim 134:1277–1284. https://doi.org/10.1007/s10973-018-7551-x

    Article  Google Scholar 

  45. Bachaga T, Daly R, Escoda L, Sunol JJ, Khitouni M (2015) Influence of chemical composition on martensitic transformation of MnNiIn shape memory alloys. J Therm Anal Calorim 122:167–173

    Article  Google Scholar 

  46. Barandiaran JM, Chernenko VA, Cesari E, Salas D, Lazpita P, Gutierrez J, Orue I (2013) Magnetic influence on the martensitic transformation entropy in Ni-Mn-In metamagnetic alloy. J Appl Phys Lett 102:071904

    Article  Google Scholar 

  47. González-Legarreta L, González-Alonso D, Rosa WO, Caballero-Flores R, Suñol JJ, González J, Hernando B (2015) Magnetostructural phase transition in off-stoichiometric Ni-Mn-In Heusler alloy ribbons with low In content. J Magn Magn Mater 383:190–195

    Article  Google Scholar 

  48. Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K, Oikawa K (2004) Magnetic and martensitic transformations of NiMnX (X = In, Sn, Sb) ferromagnetic shape memory alloys. J Appl Phys Lett 85:4358

    Article  Google Scholar 

  49. Yiwen J, Li Z, Li Z, Yang Y, Yang B, Zhang Y, Esling C, Zhao X, Zuo L (2017) Magnetostructural transformation and magnetocaloric effect in Mn-Ni-Sn melt-spun ribbons. Eur Phys J Plus 132:1. https://doi.org/10.1140/epjp/i2017-11316-1

    Article  Google Scholar 

  50. Khan M, Dubenko I, Stadler S, Ali N (2008) Magnetostructural phase transitions in Ni50Mn25+xSb25-x Heusler alloys. J Phys Condens Matter 20:235204

    Article  Google Scholar 

  51. Santos JD, Sánchez T, Álvarez P, Sánchez ML, Sánchez ML, Sánchez Llamazares JL, Hernando B (2008) Microstructure and magnetic properties of Ni50Mn37Sn13 Heusler alloy ribbons. J Appl Phys Lett 103:07B326

    Google Scholar 

  52. Muthu S, Rama Rao NV, Maniel Raja M, Raj Kumar DM, Mohan Radheep D, Arumugan S (2010) Influence of Ni/Mn concentration on the structural, magnetic and magnetocaloric properties in Ni50-xMn37 + xSn13 Heusler alloys. J Phys D Appl Phys 43:425002

    Article  Google Scholar 

  53. Krenke T, Duman E, Acet M, Wassermann EF, Moya X, Mañosa L, Planes A (2005) Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys. Nat Mater 4:450–454

    Article  Google Scholar 

  54. Ghosh A, Mandal K (2013) Large magnetic entropy change and magnetoresistance associated with a martensitic transition of Mn-rich Mn50.5−xNi41Sn8.5+x alloys. J Phys D Appl Phys 46:435001

    Article  Google Scholar 

  55. Caballero-Flores R, González-Legarreta L, Rosa WO, Sánchez T, Prida VM, Escoda L, Suñol JJ, Btdalovd AB, Alievd AM, Koledove VV, Shavrove VG, Hernando B (2015) Magnetocaloric effect, magnetostructural and magnetic phase transformations in Ni50.3Mn36.5Sn13.2 Heusler alloy ribbons. J Alloys Compds 629:332–342

    Article  Google Scholar 

  56. Ray MK, Bagani K, Banerjee S (2014) Effect of excess Ni on martensitic transition, exchange bias and inverse magnetocaloric effect in Ni2+xMn1.4−xSn0.6 alloy. J Alloys Compds 600:55–59

    Article  Google Scholar 

  57. Aydogdu Y, Turabi AS, Kok M, Aydogdu A, Yakinci ZD, Aksan MA, Yakinci ME, Karaca HE (2016) The effect of Sn content on mechanical, magnetization and shape memory behavior in NiMnSn alloys. J Alloys Compd 683:339–345

    Article  Google Scholar 

  58. Tan CL, Feng ZC, Zhang K, Wu MY, Tian XH, Guo EJ (2017) Microstructure, martensitic transformation and mechanical properties of Ni-Mn-Sn alloys by substituting Fe for Ni. Trans Nonferrous Metals Soc China 27:2234–2223

    Article  Google Scholar 

  59. Stern-Taulats E, Castillo-Villa PO, Manosa L, Frontera C, Pramanick S, Majumdar S, Planes A (2014) Magnetocaloric effect in the low hysteresis Ni-Mn-In metamagnetic shape-memory Heusler alloy. J Appl Phys 115:173907

    Article  Google Scholar 

  60. Rosa WO, Gonzalez L, Garcıa J, Sanchez T, Vega V, Escoda L, Sunol JJ, Santos JD, Alves MJP, Sommer RL, Prida VM, Hernando B (2012) Tailoring of magnetocaloric effect in Ni45.5Mn43.0In11.5 metamagnetic shape memory alloy. Phys Res Inter 5. https://doi.org/10.1155/2012/794171

  61. Huang YJ, Hu QD, Bruno NM, Chen J-H, Karaman I, Ross Jr JH, Li JG (2015) Giant elastocaloric effect in directionally solidified Ni-Mn-In magnetic shape memory alloy. Scr Mater 105:42–45

    Article  Google Scholar 

  62. Khan M, Ali N, Stadler S (2007) Inverse magnetocaloric effect in ferromagnetic Ni50Mn(37+x)Sb(13–x) Heusler alloys. J Appl Phys 101:053919

    Article  Google Scholar 

  63. Feng WJ, Zhang Q, Zhang LQ, Li B, Du J, Deng YF, Zhang ZD (2010) Large reversible high-temperature magnetocaloric effect in Ni50−xMn38+xSb12 alloys. Solid State Commun 150:949–952

    Article  Google Scholar 

  64. Liu J, Gottschall T, Skokov KP, Moore JD, Gutfleisch O (2012) Giant magnetocaloric effect driven by structural transitions. Nat Mater 11:620–626

    Article  Google Scholar 

  65. Huang L, Cong DY, Ma L, Nie ZH, Wang ZL, Suo HL, Ren Y, Wang YD (2016) Large reversible magnetocaloric effect in a Ni-Co-Mn-In magnetic shape memory alloy. Appl Phys Lett 108:032405

    Article  Google Scholar 

  66. Monroe JA, Karaman I, Basaran B, Ito W, Umetsu RY, Kainuma R, Koyama K, Chumlyakov YI (2012) Direct measurement of large reversible magnetic-field-induced strain in Ni-Co-Mn-In metamagnetic shape memory alloys. Acta Mater 60:6883–6891

    Article  Google Scholar 

  67. Xu X, Kihara T, Tokunaga M, Matsuo A, Ito W, Umetsu RY, Kindo K, Kainuma R (2013) Magnetic field hysteresis under various sweeping rates for Ni-Co-Mn-In metamagnetic shape memory alloys. J Appl Phys Lett 103:122406

    Article  Google Scholar 

  68. Li Z, Li Z, Yang B, Zhao X, Zuo L (2018) Giant low-field magnetocaloric effect in a textured Ni45.3Co5.1Mn36.1In13.5 alloy. Script Mater 151:61–65

    Article  Google Scholar 

  69. Emre B, Yuce S, Stern-Taulats E, Planes A, Fabbrici S, Albertini F, Manosa L (2013) Large reversible entropy change at the inverse magnetocaloric effect in Ni-Co-Mn-Ga-In magnetic shape memory alloys. J Appl Phys 113:213905

    Article  Google Scholar 

  70. Kihara T, Xu X, Ito W, Kainuma R, Tokunaga M (2014) Direct measurements of inverse magnetocaloric effects in metamagnetic shape-memory alloy NiCoMnIn. Phys Rev B 90:214409

    Article  Google Scholar 

  71. Manosa L, González-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit JL, Aksoy S, Acet M (2010) Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. Nat Mater 9:478–481

    Article  Google Scholar 

  72. De Oliveira N (2007) Entropy change upon magnetic field and pressure variations. J Appl Phys Lett 90:052501

    Article  Google Scholar 

  73. Sakon T, Yamazaki S, Kodama Y, Motokawa M, Kanomata T, Oikawa K, Kainuma R, Ishida K (2007) Magnetic Field-Induced Strain of Ni–Co–Mn–In Alloy in Pulsed Magnetic Field. Jpn J Appl Phys 46:995–998

    Article  Google Scholar 

  74. Liu HS, Zhang CL, Han ZD, Xuan HC, Wang DH, Du YW (2009) The effect of Co doping on the magnetic entropy changes in Ni44−xCoxMn45Sn11 alloys. J Alloys Compd 467:27–30

    Article  Google Scholar 

  75. Feng Y, Chen H, Xiao F, Bian X, Wang P (2018) Improvement of mechanical property and large shape recovery of sintered Ni45Mn36.6In13.4Co5 alloy. J Alloy Compds 765:264–270

    Article  Google Scholar 

  76. Bachaga T, Daly R, Suñol JJ, Saurina J, Escoda L, Legarreta L, Hernando B, Khitouni M (2015) Effects of Co additions on the martensitic transformation and magnetic properties of Ni-Mn-Sn shape memory alloys. J Supercond Nov Magn 28:3087–3092

    Article  Google Scholar 

  77. Jing C, Li Z, Zhang HL, Chen JP, Qiao YF, Cao SX, Zhang JC (2009) Martensitic transition and inverse magnetocaloric effect in Co doping Ni-Mn-Sn Heusler alloy. Eur Phys J B 67:193–196

    Article  Google Scholar 

  78. Deltell A, Escoda L, Saurina J, Suñol JJ (2015) Martensitic transformation in Ni-Mn-Sn-Co Heusler alloys. Metals 5:695–705

    Article  Google Scholar 

  79. Cong DY, Roth S, Potschke M, Hurrich C, Schultz L (2010) Phase diagram and composition optimization for magnetic shape memory effect in Ni-Co-Mn-Sn alloys. J Appl Phys Lett 97:021908

    Article  Google Scholar 

  80. Cong DY, Roth S, Schultz L (2012) Magnetic properties and structural transformations in Ni-Co-Mn-Sn multifunctional alloys. Acta Mater 60:5335–5351

    Article  Google Scholar 

  81. Li Z, Jiang Y, Li Z, Sánchez Valdés CF, Sánchez Llamazares JL, Yang B, Zhang Y, Esling C, Zhao X, Zuo L (2018) Phase transition and magnetocaloric properties of Mn50Ni42-xCoxSn8 (0 ≤ x ≤ 10) melt-spun ribbons. IUCrJ 5:54

    Article  Google Scholar 

  82. Wang W, Yu J, Zhai Q, Luo Z, Zheng H (2013) Co-doping effect on the martensitic transformation and magnetic properties of Ni49Mn39Sn12 alloy. J Magn Magn Mater 346:103–106

    Article  Google Scholar 

  83. Chen X, Naik VB, Mahendiran R, Ramanujan RV (2015) Optimization of Ni-Co-Mn-Sn Heusler alloy composition for near room temperature magnetic cooling. J Alloys Compd 618:187–191

    Article  Google Scholar 

  84. Chen F, Tong YX, Tian B, Li L, Zheng YF (2014) Martensitic transformation and magnetic properties of Ti-doped NiCoMnSn shape memory alloy. Rare Metals 33:511–515

    Article  Google Scholar 

  85. Nayak AK, Suresh KG, Nigam AK (2009) Observation of enhanced exchange bias behaviour in Ni-Co-Mn-Sb Heusler alloys. J Phys D Appl Phys 42:115004

    Article  Google Scholar 

  86. Nayak AK, Suresh KG, Nigam AK (2010) Magnetic, electrical and magneto thermal properties in NiCoMnSb Heusler alloys. J Appl Phys 107:09A927

    Article  Google Scholar 

  87. Nayak AK, Suresh KG, Nigam AK (2011) Correlation between reentrant spin glass behavior and the magnetic order–disorder transition of the martensite phase in Ni-Co-Mn-Sb Heusler alloys. J Phys Condens Matter 23:416004

    Article  Google Scholar 

  88. Nayak AK, Suresh KG, Nigam AK (2011) Anomalous effects of repeated martensitic transitions on the transport, magnetic and thermal properties in Ni-Co-Mn-Sb Heusler alloy. Acta Mater 59:3304–3312

    Article  Google Scholar 

  89. Nayak AK, Suresh KG, Nigam AK (2011) Metastability of magneto-structural transition revealed by sweep rate dependence of magnetization in Ni45Co5Mn38Sb12 Heusler alloy. J Appl Phys 109:07A906

    Article  Google Scholar 

  90. Nayak AK, Suresh KG, Nigam AK (2009) Giant inverse magnetocaloric effect near room temperature in Co substituted NiMnSb Heusler alloys. J Phys D Appl Phys 42:035009

    Article  Google Scholar 

  91. Sahoo R, Raj Kumar DM, Arvindha Babu D, Suresh K, Nigam G, Manivel AK, Raja M (2013) Effect of annealing on the magnetic, magnetocaloric and magnetoresistance properties of Ni-Co-Mn-Sb melt spun ribbons. J Magn Magn Mater 347:95–100

    Article  Google Scholar 

  92. Sahoo R, Nayak AK, Suresh KG, Nigam AK (2011) Effect of Si and Ga substitutions on the magnetocaloric properties of NiCoMnSb quaternary Heusler alloys. J Appl Phys 109:07A921

    Article  Google Scholar 

  93. Nayak AK, Suresh KG, Nigam AK, Coelho AA, Gama S (2009) Pressure induced magnetic and magnetocaloric properties in NiCoMnSb Heusler alloy. J Appl Phys 106:053901

    Article  Google Scholar 

  94. Nayak AK, Suresh KG, Nigam AK (2010) Irreversibility of field induced magnetostructural transition in NiCoMnSb shape memory alloy revealed by magnetization, transport and heat capacity studies. J Appl Phys Lett 96:112503

    Article  Google Scholar 

  95. Millan-Solsona R, Stern-Taulats E, Vives E, Planes A, Sharma J, Nayak AK, Suresh KG, Manosa L (2014) Large entropy change associated with the elastocaloric effect in polycrystalline Ni-Mn-Sb-Co magnetic shape memory alloys. J App Phys Lett 105:24190

    Google Scholar 

Download references

Funding

This work was funded by the“Taishan Scholar” Project of Shandong Province and Key Basic Research Project of Shandong Natural Science Foundation of China (No. ZR2017ZB0422).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Bachaga.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachaga, T., Zhang, J., Khitouni, M. et al. NiMn-based Heusler magnetic shape memory alloys: a review. Int J Adv Manuf Technol 103, 2761–2772 (2019). https://doi.org/10.1007/s00170-019-03534-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03534-3

Keywords

Navigation