Skip to main content
Log in

Interval type-2 fuzzy logic systems optimized by central composite design to create a simplified fuzzy rule base in image processing for quality control application

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A novel method that uses a Mandami interval singleton type-2 fuzzy logic system (IT2 SFLS) with the support of the central composite design (CCD) technique and the classic approach of composed base inference (CBI) is made to enhance the modeling and the construction of the fuzzy rule base. The IT2 SFLS has the potential to outperform the singleton type-1 fuzzy logic systems (T1 SFLS). The IT2 SFLS systems accounts for the uncertainties that can be added during the system modeling and construction: the uncertain rules created using noisy data. There is no way to take into account this uncertainty in the antecedent and consequent membership functions of a singleton type-1 fuzzy logic systems. Due to this uncertainty, an additional process is required to filter the measured data, but the uncertainty is still present in the structure of the T1 system. The main goal of the proposed model is to enhance the performance obtained in the dimensional features evaluation in a quality assurance process of the manufacturing of product parts. The experiments developed in a real facility show that the application of the proposed method produced better results than that obtained by the T1 SFLS benchmarking system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gomes JFS, Leta FR (2012) Applications of computer vision techniques in the agriculture and food industry: a review. Eur Food Res Technol 235(6):989–1000

    Article  Google Scholar 

  2. Carlotto MJ (2007) Detecting change in images with parallax. In Defense and Security Symposium. International Society for Optics and Photonics, pp 656719–656719

  3. Davies ER (2009) The application of machine vision to food and agriculture: a review. Imaging Sci J 57(4):197–217

    Article  Google Scholar 

  4. Demant C, Demant C, Streicher-Abel B (1999) Industrial image processing. Springer-Verlag, Berlin

    Book  Google Scholar 

  5. González Lillo R (2011) Entendiendo la exposición en Fotografía (1ª parte). http://www.guioteca.com/fotografia/entendiendo-la-exposicion-en-fotografia-1%C2%AA-parte/

  6. Taylor BN (2009) Guidelines for evaluating and expressing the uncertainty of nist measurement results (rev. DIANE Publishing)

  7. Mouzouris GC, Mendel JM (1997) Dynamic non-singleton fuzzy logic systems for nonlinear modeling. IEEE Trans Fuzzy Syst 5(2):199–208

    Article  Google Scholar 

  8. Melin P, Castillo O (2013) A review on the applications of type-2 fuzzy logic in classification and pattern recognition. Expert Syst Appl 40(13):5413–5423

    Article  Google Scholar 

  9. Jeon G, Anisetti M, Bellandi V, Damiani E, Jeong J (2009) Designing of a type-2 fuzzy logic filter for improving edge-preserving restoration of interlaced-to-progressive conversion. Inf Sci 179(13):2194–2207

    Article  Google Scholar 

  10. Melin P, Mendoza O, Castillo O (2010) An improved method for edge detection based on interval type-2 fuzzy logic. Expert Syst Appl 37(12):8527–8535

    Article  Google Scholar 

  11. Melin P, Mendoza O, Castillo O (2011) Face recognition with an improved interval type-2 fuzzy logic sugeno integral and modular neural networks. IEEE Trans Syst Man Cybern A 41(5):1001–1012

    Article  Google Scholar 

  12. Mendoza O, Melín P, Castillo O (2009) Interval type-2 fuzzy logic and modular neural networks for face recognition applications. Appl Soft Comput 9(4):1377–1387

    Article  Google Scholar 

  13. Mendoza O, Melin P, Licea G (2009) A hybrid approach for image recognition combining type-2 fuzzy logic, modular neural networks and the sugeno integral. Inf Sci 179(13):2078–2101

    Article  Google Scholar 

  14. Melin P, Castillo O (2007) An intelligent hybrid approach for industrial quality control combining neural networks, fuzzy logic and fractal theory. Inf Sci 177(7):1543–1557

    Article  Google Scholar 

  15. Chua TW, Tan WW (2011) Non-singleton genetic fuzzy logic system for arrhythmias classification. Eng Appl Artif Intell 24(2):251–259

    Article  Google Scholar 

  16. Papakostas GA, Boutalis YS, Koulouriotis DE, Mertzios BG (2008) Fuzzy cognitive maps for pattern recognition applications. Int J Pattern Recognit Artif Intell 22(08):1461–1486

    Article  Google Scholar 

  17. Sahab N, Hagras H (2011) Adaptive non-singleton type-2 fuzzy logic systems: a way forward for handling numerical uncertainties in real world applications. Int J Comput Commun 5(3):503–529

    Article  Google Scholar 

  18. Choi BI, Rhee FCH (2009) Interval type-2 fuzzy membership function generation methods for pattern recognition. Inf Sci 179(13):2102–2122

    Article  MATH  Google Scholar 

  19. Ghasemi MJ, Tajozzakerin HR, Omidian AR (2010) An iranian national number plate localization and recognition system for private vehicles. Int J Acad Res 2(6):13–19

    Google Scholar 

  20. Mendez GM (2007) Interval type-1 non-singleton type-2 TSK fuzzy logic systems using the hybrid training method RLS-BP. In Analysis and Design of Intelligent Systems Using Soft Computing Techniques. Springer, Berlin Heidelberg, pp 36–44

    Google Scholar 

  21. Castillo O, Melin P (2012) Optimization of type-2 fuzzy systems based on bio-inspired methods: a concise review. Inf Sci 205:1–19

    Article  Google Scholar 

  22. Tahmasebi P, Hezarkhani A (2012) A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation. Comput Geosci 42:18–27

    Article  Google Scholar 

  23. Martínez R, Castillo O, Aguilar LT (2009) Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms. Inf Sci 179(13):2158–2174

    Article  MATH  Google Scholar 

  24. Melin P, Sánchez D, Castillo O (2012) Genetic optimization of modular neural networks with fuzzy response integration for human recognition. Inf Sci 197:1–19

    Article  Google Scholar 

  25. Mendel JM (2001) Uncertain rule-based fuzzy logic systems: introduction and new directions. Prentice-Hall, Upper Saddle River

    MATH  Google Scholar 

  26. Buragohain M, Mahanta C (2008) A novel approach for ANFIS modelling based on full factorial design. Appl Soft Comput 8(1):609–625

    Article  Google Scholar 

  27. Praga-Alejo R, González GD, Pérez VP, Cantú SM, Flores HB (2012) Modeling a fuzzy logic system using central composite design. In proceedings of 1st annual world conference of the Society for Industrial and Systems Engineering. Washington DC, USA

  28. Montes Dorantes PN, Praga-Alejo R, Nieto Gonzalez JP, Méndez GM (2013) Modelado de sistemas adaptativos de inferencia neuro-difusa usando diseño central compuesto. Res Comput Sci 62:259–269

    Google Scholar 

  29. Montes Dorantes PN, Nieto González JP, Praga-Alejo R, Guajardo Cosio KL, Méndez GM (2014) Sistema inteligente para procesamiento de imágenes en control de calidad basado en el modelo difuso singleton tipo 1. Res Comput Sci 74:117–130

    Google Scholar 

  30. Dorantes M, Noradino P, Nieto Gonzalez JP, Mendez GM (2014) Fault detection systems via a novel hybrid methodology for fuzzy logic systems based on individual base inference and statistical process control. Latin America Transactions, IEEE (Rev IEEE Am Lat) 12(4):706–712

    Article  Google Scholar 

  31. Makadia AJ, Nanavati JI (2013) Optimisation of machining parameters for turning operations based on response surface methodology. Measurement 46(4):1521–1529

    Article  Google Scholar 

  32. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  MATH  Google Scholar 

  33. Benneyan JC (1998) Use and interpretation of statistical quality control charts. Int J Qual Health Care 10(1):69–73

    Article  Google Scholar 

  34. Zarandi MF, Alaeddini A, Turksen IB (2008) A hybrid fuzzy adaptive sampling–run rules for Shewhart control charts. Inf Sci 178(4):1152–1170

    Article  Google Scholar 

  35. Senturk S, Erginel N (2009) Development of fuzzy and control charts using α-cuts. Inf Sci 179(10):1542–1551

    Article  Google Scholar 

  36. Gülbay M, Kahraman C (2007) An alternative approach to fuzzy control charts: direct fuzzy approach. Inf Sci 177(6):1463–1480

    Article  MATH  Google Scholar 

  37. Dongale TD, Kulkarni TG, Kadam PA, Mudholkar RR (2012) Simplified method for compiling rule base matrix. Int J Soft Comp Engg 2(1):39–43

    Google Scholar 

  38. Macvicarwhelan P (1978) Fuzzy sets, concept of height, and hedge very. IEEE Trans Syst Man Cybern 8(6):507–511

    Article  Google Scholar 

  39. Jang JSR, Sun CT, Mizutani E (1997) Neuro-fuzzy and soft computing; a computational approach to learning and machine intelligence. Prentice-Hall, Upper Saddle River

    Book  Google Scholar 

  40. Montgomery DC (2004) Diseño y Análisis de experimentos. Limusa-Wiley, Hoboken

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascual Noradino Montes Dorantes.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Méndez, G.M., Montes Dorantes, P.N. & Mexicano Santoyo, A. Interval type-2 fuzzy logic systems optimized by central composite design to create a simplified fuzzy rule base in image processing for quality control application. Int J Adv Manuf Technol 102, 3757–3766 (2019). https://doi.org/10.1007/s00170-019-03354-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03354-5

Keywords

Navigation