Skip to main content

Non-iterative Wagner-Hagras General Type-2 Mamdani Singleton Fuzzy Logic System Optimized by Central Composite Design in Quality Assurance by Image Processing

  • Chapter
  • First Online:
Recent Trends on Type-2 Fuzzy Logic Systems: Theory, Methodology and Applications

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 425))

Abstract

This paper presents the implementation of a non-iterative General Type-2 (GT2) Fuzzy Logic System (FLS) in quality assurance by image processing using Mamdani singleton model based on Wagner-Hagras (WH) algorithm. The antecedents and consequents are modelled and remain fixed. The modelling of the rule base uses the Central Composite Design (CCD) model to create a classifier in an industrial quality area. Results show that the implementation of the WH GT2FLS model provides very close or better results with a few alpha-cut versus an Interval Type-2 model (IT-2) FLS system depending on the type of membership function selected for the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mendel, J.M.: Uncertain Rule-Based Fuzzy Systems. Springer, Introduction and new directions (2017)

    Book  MATH  Google Scholar 

  2. Melin, P., Castillo, O.: An intelligent hybrid approach for industrial quality control combining neural networks, fuzzy logic and fractal theory. Inf. Sci. 177, 1543–1557 (2007)

    Article  Google Scholar 

  3. Gilan, S.S., Sebt, M.H., Shahhosseini, V.: Computing with words for hierarchical competency based selection of personnel in construction companies. Appl. Soft Comput. 12, 860–871 (2012)

    Article  Google Scholar 

  4. Salehi, F., Keyvanpour, M.R., Sharifi, A.: GT2-CFC: general type-2 collaborative fuzzy clustering method. Inf. Sci. 578, 297–322 (2021)

    Google Scholar 

  5. Shahparast, H., Mansoori, E.G.: Developing an online general type-2 fuzzy classifier using evolving type-1 rules. Int. J. Approximate Reasoning 113, 336–353 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheng-Dong, L.I., Gui-Qing, Z.H.A.N.G., Hui-Dong, W.A.N.G., Wei-Na, R.E.N.: Properties and data-driven design of perceptual reasoning method based linguistic dynamic systems. Acta Automatica Sinica. 40, 2221–2232 (2014)

    Article  Google Scholar 

  7. Mittal, K., Jain, A., Vaisla, K.S., Castillo, O., Kacprzyk, J.: A comprehensive review on type 2 fuzzy logic applications: past, present and future. Eng. Appl. Artif. Intell. 95, 103916 (2020)

    Article  Google Scholar 

  8. Ibrahim, A.A., Zhou, H.B., Tan, S.X., Zhang, C.L., Duan, J.A.: Regulated Kalman filter based training of an interval type-2 fuzzy system and its evaluation. Eng. Appl. Artif. Intell. 95, 103867 (2020)

    Article  Google Scholar 

  9. Balootaki, M.A., Rahmani, H., Moeinkhah, H., Mohammadzadeh, A.: On the Synchronization and Stabilization of fractional-order chaotic systems: Recent advances and future perspectives. Physica A 551, 124203 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sanchez, M.A., Castro, J.R., Ocegueda-Miramontes, V., Cervantes, L.: Hybrid learning for general type-2 TSK fuzzy logic systems. Algorithms 10, 99 (2017)

    Article  Google Scholar 

  11. Ontiveros, E., Melin, P., Castillo, O.: High order α-planes integration: a new approach to computational cost reduction of general Type-2 fuzzy systems. Eng. Appl. Artif. Inteligence 4, 186–197 (2018)

    Article  Google Scholar 

  12. Wu, D., Mendel, J.M.: Recommendations on designing practical interval type-2 fuzzy systems. Eng. Appl. Artif. Intell. 85, 182–193 (2019)

    Article  Google Scholar 

  13. Chiclana, F., Zhou, S.M.: Type-reduction of general type-2 fuzzy sets: the type-1 OWA approach. Int. J. Intell. Syst. 28, 505–522 (2013)

    Article  Google Scholar 

  14. Jeng, W.H.R., Yeh, C.Y., Lee, S.J.: General type-2 fuzzy neural network with hybrid learning for function approximation. In: 2009 IEEE International Conference on Fuzzy Systems, pp. 1534–1539 (2009)

    Google Scholar 

  15. Figueroa-García, J.C., Román-Flores, H., Chalco-Cano, Y.: Type–reduction of Interval Type–2 fuzzy numbers via the Chebyshev inequality. Fuzzy Sets Syst. (2021)

    Google Scholar 

  16. Castillo, O., Muhuri, P.K., Melin, P., Pulkkinen, P.: Emerging Issues and Applications of Type-2 Fuzzy Sets and Systems (2020)

    Google Scholar 

  17. Sahab, N., Hagras, H.: Adaptive non-singleton type-2 fuzzy logic systems: a way forward for handling numerical uncertainties in real world applications. Int. J. Comput. Commun. Control 6, 503–529 (2011)

    Article  Google Scholar 

  18. Tavana, M.R., Khooban, M.H., Niknam, T.: Adaptive PI controller to voltage regulation in power systems: STATCOM as a case study. ISA Trans. 66, 325–334 (2017)

    Article  Google Scholar 

  19. Mohammadzadeh, A., Sabzalian, M.H., Ahmadian, A., Nabipour, N.: A dynamic general type-2 fuzzy system with optimized secondary membership for online frequency regulation. ISA Trans. 112, 150–160 (2021)

    Article  Google Scholar 

  20. Torshizi, A.D., Zarandi, M.H.F.: A new cluster validity measure based on general type-2 fuzzy sets: application in gene expression data clustering. Knowl. Based Syst. 64, 81–93 (2014)

    Article  Google Scholar 

  21. Mohammadzadeh, A., Kumbasar, T.: A new fractional-order general type-2 fuzzy predictive control system and its application for glucose level regulation. Appl. Soft Comput. 91, 106241 (2020)

    Article  Google Scholar 

  22. Khooban, M.H., Vafamand, N., Liaghat, A., Dragicevic, T.: An optimal general type-2 fuzzy controller for Urban Traffic Network. ISA Trans. 66, 335–343 (2017)

    Article  Google Scholar 

  23. Zarandi, M.F., Soltanzadeh, S., Mohammadi, A., Castillo, O.: Designing a general type-2 fuzzy expert system for diagnosis of depression. Appl. Soft Comput. 80, 329–341 (2019)

    Article  Google Scholar 

  24. Carvajal, O., Melin, P., Miramontes, I., Prado-Arechiga, G.: Optimal design of a general type-2 fuzzy classifier for the pulse level and its hardware implementation. Eng. Appl. Artif. Intell. 97, 104069 (2021)

    Article  Google Scholar 

  25. Zhao, T., Liu, J., Dian, S., Guo, R., Li, S.: Sliding-mode-control-theory-based adaptive general Type-2 fuzzy neural network control for power-line inspection robots. Neurocomputing 401, 281–294 (2020)

    Article  Google Scholar 

  26. Ontiveros-Robles, E., Castillo, O., Melin, P.: Towards asymmetric uncertainty modeling in designing General Type-2 Fuzzy classifiers for medical diagnosis. Expert Syst. Appl. 183, 115370 (2021)

    Article  Google Scholar 

  27. Doctor, F., Syue, C.H., Liu, Y.X., Shieh, J.S., Iqbal, R.: Type-2 fuzzy sets applied to multivariable self-organizing fuzzy logic controllers for regulating anesthesia. Appl. Soft Comput. 38, 872–889 (2016)

    Article  Google Scholar 

  28. Geramian, A., Abraham, A.: Customer classification: a Mamdani fuzzy inference system standpoint for modifying the failure mode and effect analysis based three dimensional approach. Expert Syst. Appl., 115753 (2021)

    Google Scholar 

  29. Ontiveros-Robles, E., Melin, P.: A hybrid design of shadowed type-2 fuzzy inference systems applied in diagnosis problems. Eng. Appl. Artif. Intell. 86, 43–55 (2019)

    Article  Google Scholar 

  30. Ochoa, P., Castillo, O., Melin, P., Soria, J.: Differential evolution with shadowed and General Type-2 fuzzy systems for dynamic parameter adaptation in optimal design of fuzzy controllers (2021)

    Google Scholar 

  31. Almaraashi, M., John, R., Hopgood, A., Ahmadi, S.: Learning of interval and general type-2 fuzzy logic systems using simulated annealing: Theory and practice. Inforamtion Sci. 360, 21–42 (2016)

    Article  Google Scholar 

  32. Mendel, J.M.: General type-2 fuzzy logic systems made simple: a tutorial. IEEE Trans. Fuzzy Syst. 22, 1162–1182 (2013)

    Article  Google Scholar 

  33. http://www.vision.caltech.edu/bouguetj/calib_doc/index.html#ref

  34. Carlotto, M.J.: Detecting change in images with parallax. In: Defense and Security Symposium, pp. 656719–656719. International Society for Optics and Photonics (2007)

    Google Scholar 

  35. Davies, E.R.: The application of machine vision to food and agriculture: a review. Imaging Sci. J. 57(4), 197–217 (2009)

    Article  Google Scholar 

  36. Demant, C., Demant, C., Streicher-Abel, B.: Industrial Image Processing. Springer (1999)

    Book  Google Scholar 

  37. http://www.guioteca.com/fotografia/entendiendo-la-exposicion-en-fotografia-1%C2%AA-parte/

  38. Taylor, B.N.: Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results. DIANE Publishing (2009)

    Google Scholar 

  39. Mouzouris, G.C., Mendel, J.M.: Dynamic non-singleton fuzzy logic systems for nonlinear modeling. Fuzzy Syst. IEEE Trans. 5(2), 199–208 (1997)

    Article  Google Scholar 

  40. Méndez, G.M., Dorantes, P.N.M., Mexicano, A.: Interval type-2 fuzzy logic systems optimized by central composite design to create a simplified fuzzy rule base in image processing for quality control application. Int. J. Adv. Manuf. Technol. 102(9–12), 3757–3766 (2019)

    Article  Google Scholar 

  41. Montes Dorantes, P.N., Nieto González, J.P., Praga-Alejo, R., Guajardo Cosio, K.L., Méndez, G.M.: Sistema inteligente para procesamiento de imágenes en control de calidad basado en el modelo difuso singleton tipo 1. Res. Comput. Sci. 74, 117–130 (2014)

    Google Scholar 

  42. Montes Dorantes, P.N., Jiménez Gómez, M.A, Méndez, G.M., Nieto González, J.P., de la Rosa Elizondo, J.: One step models for soft computing techniques. Industrial application to image processing in quality assurance process. Int. J. Adv. Manuf. Technol. (IJAMT, Springer), 81(5), 771–778 (2015)

    Google Scholar 

  43. Dorantes, P.N.M., Méndez, G.M.: Non-iterative radial basis function neural networks to quality control via image processing. IEEE Lat. Am. Trans. 13(10), 3457–3451 (2015)

    Google Scholar 

  44. Dorantes, P.N.M., Mexicano, S.A., Méndez, G.M.: Modeling Type-1 singleton fuzzy logic systems using statistical parameters in foundry temperature control application. Smart Sustain. Manuf. Syst. 2(1), 180–203 (2018)

    Google Scholar 

  45. Taylor, B.N., Kuyatt, C.E.: NIST, (National Institute of Standards and Technology, United States Department of Commerce Technology Administration. Technical Note 1297, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results (1994)

    Google Scholar 

  46. Braunschweig, W.K.: ISO/BIMP, Uncertainty of Measurement (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascual Noradino Montes Dorantes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montes Dorantes, P.N., Mendez, G.M. (2023). Non-iterative Wagner-Hagras General Type-2 Mamdani Singleton Fuzzy Logic System Optimized by Central Composite Design in Quality Assurance by Image Processing. In: Castillo, O., Kumar, A. (eds) Recent Trends on Type-2 Fuzzy Logic Systems: Theory, Methodology and Applications. Studies in Fuzziness and Soft Computing, vol 425. Springer, Cham. https://doi.org/10.1007/978-3-031-26332-3_13

Download citation

Publish with us

Policies and ethics