Skip to main content
Log in

Experimental and numerical analysis of grain refinement effect on hot tearing susceptibility for Al–Mg alloys

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Results of finite element method (FEM) thermal stress analyses during solidification of an Al–Mg alloy with different grain sizes revealed the contribution of the macroscopic strain to the reduction of hot tearing susceptibility by the grain refinement. This study used an elasto-creep model to describe the mechanical behavior of the alloy in the semi-solid state. The grain size–dependence was described using the experimentally determined two parameters of n (=dlog\( {\dot{\upvarepsilon}}^{\mathrm{c}} \)/dlogσ) and A in the power-law creep model in earlier work. Results showed that grain refinement makes the creep strain distribution more uniform and suppresses the maximum strain value during solidification, which in turn should contribute to reducing the hot tearing susceptibility. This result demonstrates that the grain size–dependence of the two creep parameters during the solidification is a key factor for the quantitative prediction of hot tearing tendency with the consideration of grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lees DCG (1946) The hot-tearing tendencies of aluminum casting alloys. J Inst Met 72:343–364

    Google Scholar 

  2. Lin S, Aliravci C, Pekguleryuz MO (2007) Hot-tear susceptibility of aluminum wrought alloys and the effect of grain refining. Metall Mater Trans A 38:1056–1068

    Article  Google Scholar 

  3. Kimura R, Hatayama H, Shinozaki K, Murashima I, Asada J, Yoshida M (2009) Effect of grain refiner and grain size on the susceptibility of Al–Mg die casting alloy to cracking during solidification. J Mater Process Technol 209:210–219

    Article  Google Scholar 

  4. Grandfield JF, Eskin DG, Bainbridge IF (2013) Direct-chill casting of light alloys. Wiley-TMS, pp:103–143

  5. Pellini W (1952) Strain theory of hot tearing. Foundry 80:125–137

    Google Scholar 

  6. Bishop HF, Ackerlind CG, Pellini WS (1957) Investigation of metallurgical and mechanical effects in the development of hot tearing. Trans Am Foundry Soc 65:247–258

    Google Scholar 

  7. Campbell J (1992) Castings second edition. Butterworth-Heinemann, pp 242–258

  8. Eskin DG, Suyitno, Katgerman K (2004) Mechanical properties in the semi-solid state and hot tearing of aluminium alloys. Prog Mater Sci 49:629–711

    Article  Google Scholar 

  9. Magnin B, Maenner L, Katgerman L, Engler S (1996) Ductility and rheology of an Al–4.5%Cu alloy from room temperature to coherency temperature. Mater Sci Forum 222:1209–1214

    Article  Google Scholar 

  10. Nagaumi H, Umeda T (2002) Prediction of internal cracking in a direct-chill cast, high strength, Al–Mg–Si alloy. J Light Met 2:161–167

    Article  Google Scholar 

  11. M'Hamdi M, Benum S, Mortensen D, Fjær HG, Drezet J-M (2003) The importance of viscoplastic strain rate in the formation of center cracks during the start-up phase of direct-chill cast aluminum extrusion ingots. Metall Mater Trans A 34:1941–1952

    Article  Google Scholar 

  12. Suyitno KWH, Katgerman L (2004) Finite element method simulation of mushy zone behavior during direct-chill casting of an Al–4.5 pct Cu alloy. Metall Mater Trans A 35:2918–2926

    Google Scholar 

  13. Pokorny M, Monroe C, Beckermann C, Bichler L, Ravindran C (2008) Prediction of hot tear formation in a magnesium alloy permanent mold casting. Int J Met 2:41–53

    Google Scholar 

  14. Shi Z, Dong J, Zhang M, Zheng L (2014) Hot tearing susceptibility analysis and prediction of K418 superalloy for auto turbocharger turbine wheel. Trans Nonferrous Metals Soc China 24:2737–2751

    Article  Google Scholar 

  15. Prokhorov NN (1962) Resistance to hot tearing of cast metals during solidification Russian Casting Production 2:172–175

  16. Phillion AB, Cockcroft SL, Lee PD (2009) Predicting the constitutive behavior of semi-solids via a direct finite element simulation: application to AA5182. Model Simul Mater Sci Eng 17:055011

    Article  Google Scholar 

  17. Jamaly N, Phillion AB, Drezet J-M (2013) Stress–strain predictions of semisolid Al–Mg–Mn alloys during direct chill casting: effects of microstructure and process variables. Metall Mater Trans B Process Metall Mater Process Sci 44:1287–1295

    Article  Google Scholar 

  18. Phillion AB, Cockcroft SL, Lee PD (2008) A three-phase simulation of the effect of microstructural features on semi-solid tensile deformation. Acta Mater 56:4328–4338

    Article  Google Scholar 

  19. Takai R, Matsushita A, Yanagida S, Nakamura K, Yoshida M (2015) Development of an elasto-viscoplastic constitutive equation for an Al–Mg alloy undergoing a tensile test during partial solidification. Mater Trans 56:1233–1241

    Article  Google Scholar 

  20. Takai R, Kimura S, Kashiuchi R, Kotaki H, Yoshida M (2016) Grain refinement effects on the strain rate sensitivity and grain boundary sliding in partially solidified Al–5 wt.%Mg alloy. Mater Sci Eng A 667:417–425

    Article  Google Scholar 

  21. Takai R, Tsunoda T, Kawada Y, Hirohara R, Okane T, Yoshida M (2018) Effect of temperature field and mechanical properties of casting on prediction of hot tearing tendency using FEM thermal stress analysis. Mater Trans 59:1333–1340

    Article  Google Scholar 

  22. Stangeland A, Mo A, M'Hamdi M, Viano D, Davidson C (2006) Thermal strain in the mushy zone related to hot tearing. Metall Mater Trans A 37:705–714

    Article  Google Scholar 

  23. Pokorny MG, Monroe CA, Beckermann C, Zhen Z, Hort N (2010) Simulation of stresses during casting of binary Mg-Al alloys. Metall Mater Trans A 41:3196–3207

    Article  Google Scholar 

  24. Giraud E, Suery M, Coret M (2010) Mechanical behavior of AA6061 aluminum in the semisolid state obtained by partial melting and partial solidification. Metall Mater Trans A 41:2257–2268

    Article  Google Scholar 

  25. Hirohara R, Kawada K, Takai R, Otaki M, Okane T, Yoshida M (2017) Prediction and experimental validation of cooling rate dependence of viscoplastic properties in a partially solidified state of Al–5mass%Mg alloy. Mater Trans 58:1299–1307

    Article  Google Scholar 

  26. Singer ARE, Cottrell SA (1947) Properties of the aluminum–silicon alloys at temperatures in the region of the solidus. J Inst Met 73:33–54

    Google Scholar 

  27. Dahle AK, Arnberg L (1997) Development of strength in solidifying aluminium alloys. Acta Mater 45:547–559

    Article  Google Scholar 

  28. Metz SA, Flemings MC (1970) A fundamental study of hot tearing. AFS Trans 78:453–460

    Google Scholar 

  29. Kubota M, Kitaoka S (1973) Solidification behavior and hot tearing tendency of aluminum casting alloys. AFS Trans 81:424–427

    Google Scholar 

  30. Alankar A, Wells MA (2010) Constitutive behavior of as-cast aluminum alloys AA3104, AA5182 and AA6111 at below solidus temperatures. Mater Sci Eng A 527:7812–7820

    Article  Google Scholar 

  31. Odqvist FKG (1974) Mathematical theory of creep and creep rupture second edition. Clarendon Press, pp. 22

  32. Norton FH (1929) The creep of steel at high temperatures. McGraw-Hill Book Company, pp. 67

  33. Bailey RW (1935) The utilization of creep test data in engineering design. Proc Inst Mech eng 131:131–349

    Article  Google Scholar 

  34. Eskin DG, Suyitno MJF, Katgerman L (2004) Contraction of aluminum alloys during and after solidification. Metall Mater Trans A 35:1325–1335

    Article  Google Scholar 

  35. Stangeland A, Mo A, Nielsen Ø, Eskin D, M'Hamdi M (2004) Development of thermal strain in the coherent mushy zone during solidification of aluminum alloys. Metall Mater Trans A 35:2903–2915

    Article  Google Scholar 

  36. Drezet J-M, Eggeler G (1994) High apparent creep activation energies in mushy zone microstructures. Scripta Metall Mater 31:757–762

    Article  Google Scholar 

  37. Hao H, Maijer DM, Wells MA, Phillion A, Cockcroft SL (2010) Modeling the stress-strain behavior and hot tearing during direct chill casting of an AZ31 magnesium billet. Metall Mater Trans A 41:2067–2077

    Article  Google Scholar 

  38. D'Elia F, Ravindran C, Sediako D (2015) Interplay among solidification, microstructure, residual strain and hot tearing in B206 aluminum alloy. Mater Sci Eng A 624:169–180

    Article  Google Scholar 

  39. Prasad YVRK, Seshacharyulu T (1998) Modelling of hot deformation for microstructural control. Inter Mater Rev 43:243–258

    Article  Google Scholar 

  40. Narayana Murty SVS, Nageswara Rao B, Kashyap BP (2000) Instability criteria for hot deformation of materials. Inter Mater Rev 45:15–26

    Article  Google Scholar 

  41. Sheikh Ansari MH, Aghaie-Khafri M (2018) Predicting flow localization in semi-solid deformation. Inter J Mater Form 11:165–173

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Takai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takai, R., Endo, N., Hirohara, R. et al. Experimental and numerical analysis of grain refinement effect on hot tearing susceptibility for Al–Mg alloys. Int J Adv Manuf Technol 100, 1867–1880 (2019). https://doi.org/10.1007/s00170-018-2791-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-2791-2

Keywords

Navigation