Skip to main content
Log in

Alignment turning system for precision lens cells

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This research increases the ability and value of a traditional vertical lathe and applies to manufacture a precise lens cell for the optical industry. The optical performance is limited by the residual centration error and position accuracy of conventional assembly methods. Recently, the development of a poker-chip assembly system with high-precision lens barrels has overcome these limitations and provided a solution for ultra-high-performance optical systems. To develop a high-precision lens cell by using poker-chip assembly, an alignment turning system (ATS), is developed based on a vertical lathe and equipped with tactile and optical measurement modules. Inside the ATS, the building-in the vibration/temperature monitoring sensors, which help to self-monitoring and network communication with the intelligent manufacturing techniques, to understand and master the reliability and efficiency of ATS. This system can manufacture precise lens cells, applied for optical metrology, high numerical aperture objective lenses, and lithography projection lenses. This paper describes the design and development of the ATS and its capabilities. The ATS is composed of measurement, alignment, and turning modules. After the ATS completes the measurement, alignment, and turning processes, the centration error of a lens cell, which is 200 mm in diameter, can be controlled to within 10 arcsec. Here, a lens cell with three subcells was assembled through the poker-chip method; each subcell was measured and then it underwent alignment and turning processes. The lens assembly test was performed five times by three technicians, and the average transmission centration error of the assembly lens was 12.45 arcsec. The results demonstrate that the ATS can achieve considerable assembly efficiency for high-precision optical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lamontagne F et al (2015) Lens auto-centering. Proc SPIE 962619:9626

    Google Scholar 

  2. Lamontagne F et al (2016) Disruptive advancement in precision lens mounting. Proc SPIE 95820D:9582

    Google Scholar 

  3. Langehanenberg P, Heinisch J, Buß C, Wilde C (2014) High-precision mounted Lens production. Opt Photonik 9:41–45

    Article  Google Scholar 

  4. Yoder P (2002) Mounting Optics in Optical Instruments, SPIE optical engineering press. Bellingham, Washington

    Google Scholar 

  5. Peng WJ et al (2017) Design, tolerance analysis, fabrication, and testing of a 6-in. Dual-wavelength transmission sphere for a Fizeau interferometer. J Opt Eng 119:235–246

    Google Scholar 

  6. Souchon A (2015) Enabling micron level mounting accuracy. Melles Griot Exact Placement™ Lens Assembly Technology, Melles Groit, Rochester, NY

    Google Scholar 

  7. Ho CF et al (2012) Study on measurement of 160 mm convex hyperbolic mirror for Cassegrain reflecting system. Proc SPIE 84860Q:8486

    Google Scholar 

  8. Huang CY et al (2017) The development of alignment turning system for precision lens cells. Proc SPIE 103710E:10371

    Google Scholar 

  9. Hsu WY, Lee CS, Chen PJ, Chen NT, Chen FZ, Yu ZR, Kuo CH, Hwang CH (2009) Development of the fast astigmatic auto-focus microscope system. Meas Sci Technol 20:045902

    Article  Google Scholar 

  10. Huang CY et al (2016) Development of precision angle measurement system. Proc IEEE Int Instrum Meas Technol Conf. https://doi.org/10.1109/I2MTC.2016.7520530

  11. Beier M et al (2012) Lens centering of aspheres for high-quality optics. Adv Opt Technol 1:441–446

    Google Scholar 

Download references

Acknowledgments

This material was based on work supported by the Ministry of Science and Technology of Taiwan, R.O.C. under Grant No. MOST 106-2218-E-007-023. The authors and researchers wish to thank MAX SEE INDUSTRY CO., LTD. for constructing the turning module and the control interface of the ATS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Yao Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, CY., Ho, CF., Wang, JH. et al. Alignment turning system for precision lens cells. Int J Adv Manuf Technol 100, 1383–1392 (2019). https://doi.org/10.1007/s00170-018-2699-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-2699-x

Keywords

Navigation