Estimation of the perforation force for polymer composite conveyor belts taking into consideration the shape of the piercing punch

  • Dominik WojtkowiakEmail author
  • Krzysztof Talaśka
  • Ireneusz Malujda
  • Grzegorz Domek
Open Access


Due to the improvement of the mechanical properties of polymer composite belts used in vacuum belt conveyors, its perforation process causes a lot of technical issues for manufacturers worldwide. The objective of this paper is to analyze the belt punching process with two cutting edges and present the influence of the piercing punch shape on the perforation force. Based on the analysis, the analytical stress model was derived and validated by using both empirical and FEM tests. The application of the proposed model was proved by presenting the methodology used to estimate the perforation force for the flat piercing punch based on the mechanical properties of the belt obtained from simple strength tests (uniaxial tension, compression, and shear), with an error between 4 and 15%. In this report, the analysis of the piercing punch profiles was made and eight different piercing punch profiles were tested. Presented results confirmed that the spherical bowl punch may be considered as a most effective tool for belt punching, because it reduced the perforation force by 60% and the precision of the created holes was the best among the tested punch profiles for all three groups of polymer composite belts. By combining the obtained results, in the form of shape factors β, with the perforation force approximation model, it is possible to calculate peak force value for the specified tool profile and belt type and use this data in the design process of the punching dies.


Spherical bowl piercing punch Punching Belt perforation Vacuum conveyor belts FEM analysis Polymer composites 



Shape factor   −


Strain at damage   −


Strain at plastic deformation   −


Poisson’s ratio   −


Deflection angle of the belt   rad


Density   kg/m3


Circumrefential bending stress   MPa


Bending stress   MPa


Compression stress   MPa


Equivalent stress   MPa


Radial bending stress   MPa


Shearing stress   MPa


Compression area factor   −


Critical compression area factor   −


Estimated compression area factor   −


Punch-belt contact area   mm2


Compression distance of the scrap   mm

\(A^{\prime }\)

Scrap compression area   mm2


Damping constant   Ns/mm


Rigidity of the material   Nmm


J-C model parameters   −


Young’s modulus   MPa


Perforation force   N


Analytical peak perforation force   N


Empirical peak perforation force   N


Estimated peak perforation force   N


Perforation force at plastic deformation   N


Rheological peak perforation force   N


Thickness of the belt   mm


Thickness of a polyamide core   mm


Elastic constant   N/mm


Circumferential bending torque   Nmm


Radial bending torque   Nmm


Friction coefficient   –


Pressure applied by moving punch   MPa


Radius of the piercing punch   mm


Radius of the lost contact area   mm


Yield point   MPa


Ultimate tensile strength   MPa


Shearing force   N


Velocity of the punch   mm/s


Deflection of the belt   mm


Displacement of the piercing punch   mm


Displacement at damage   mm


Displacement at plastic deformation   mm



  1. 1.
    Perneder R, Osborne I (2012) Handbook Timing belts—principles, calculations, applications. Springer, BerlinCrossRefGoogle Scholar
  2. 2.
    Wojtkowiak D, Talaśka K, Malujda I, Domek G (2018) Analysis of the influence of the cutting edge geometry on parameters of the perforation process for conveyor and transmission belts. In: MATEC Web of Conferences, vol 157, p 01022Google Scholar
  3. 3.
    Wojtkowiak D, Talaśka K, Malujda I, Domek G (2017) Vacuum conveyor belts perforation—methods, materials and problems. Mechanik.
  4. 4.
    Optbelt (2017) Technical manual polyurethane timing belts. Accesed 31 January 2018
  5. 5.
    Marciniak Z (2002) Konstrukcja tocznikw. Ośrodek techniczny A.Marciniak, WarsawGoogle Scholar
  6. 6.
    Suchy I (2006) Handbook of Die Design. McGraw-Hill Companies, New YorkGoogle Scholar
  7. 7.
    Quazi TZ, Shaikh RS (2012) An overview of clearance optimization in sheet metal blanking process. Int J Mod Eng Res (IJMER) 6(2):4547–4558Google Scholar
  8. 8.
    Kutuniva K, Karjalainen J, Mäntyjärvi K (2012) Effect of convex sheared punch geometry on cutting force of ultra-high-strength steel. Key Eng Mater 504–506:1359–1364CrossRefGoogle Scholar
  9. 9.
    Bratus V, Kosel F, Kovac M (2010) Determination of optimal cutting edge geometry on the stamped orthotropic circular electrical steel sheet. J Mater Process Technol 210:396–407CrossRefGoogle Scholar
  10. 10.
    Yamada T, Wang Z, Sasa T (2014) Effect of tool shape on galling behavior in plate shearing. Proceedia Eng 81:1817–1822CrossRefGoogle Scholar
  11. 11.
    Groover MP (2010) Fundamentals of modern manufacturing – materials, processes and systems Sheet metalworking, 4th. Wiley, New York, pp 443–482Google Scholar
  12. 12.
    Soares JA, Gipela ML, Lararin SF, Marcondes PVP (2013) Study of the punch-die clearance influence on the sheared edge quality of thick sheets. Int J Adv Manuf Technol 65:451–457CrossRefGoogle Scholar
  13. 13.
    Uddeholm tooling, SSAB Swedish Steels (2016) Tooling solutions for advanced high strength steels—selection guidelines. Accesed 31 January 2018
  14. 14.
    Uţuleanu S, Vlase A, Sindilă G, Căpăţǎnă N (2017) Study of the influence of punched contour geometry over the punch force using finite element analysis. MATEC Web of Conferences 112:1–6CrossRefGoogle Scholar
  15. 15.
    Maiti SK, Ambekar AA, Singh UP, Date PP, Narasimhan K (2000) Assessment of influence of some process parameters on sheet metal blanking. J Mater Process Technol 1–3(102):249–256CrossRefGoogle Scholar
  16. 16.
    Jadhav VJ, Shah BR (2017) Assessment & Optimization of influence of some process parameters on sheet metal blanking. Int Res J Eng Technol 10(04):266–272Google Scholar
  17. 17.
    Nishad R, Totre A, Bodke S, Chauhan A (2013) An overview of the methodologies used in the optimization processes in sheet metal blanking. Int J Mech Eng Rob Res 2(2):307–314Google Scholar
  18. 18.
    Kulkarni D, AdhikraoShinde R, Prakash Badgujar J (2015) Clearance Optimization of Blanking Process. Int J Sci Eng Res 12(6):178–191Google Scholar
  19. 19.
    Zain MSM, Abdullah AB, Samad Z (2017) Effect of puncher profile on the precision of punched holes on composite panels. Int J Adv Manuf Technol 89:3331–3336CrossRefGoogle Scholar
  20. 20.
    Chan HY, Abdullah AB, Samad Z (2015) Precision punching of hole on composite panels. Indian J Eng Mater Sci 22:641–651Google Scholar
  21. 21.
    Lambiase F, Durante M (2017) Mechanical behavior of punched holes produced on thin glass fiber reinforced plastic laminates. Compos Struct 173:25–34CrossRefGoogle Scholar
  22. 22.
    Pramono AE, Indriyani R, Zulfia A, Subyakto (2015) Tensile and shear punch properties of bamboo fibers reinforced polymer composites. Int J Composite Mat 5:9–17Google Scholar
  23. 23.
    Karjalainen JA, Mäntyjärvi K, Juuso M (2007) Punching Force Reduction with Wave-Formed Tools. Key Eng Mater 344:209–216CrossRefGoogle Scholar
  24. 24.
    Singh UP, Strepel AH, Kals HJJ (1992) Design study of the geometry of a punching/blanking tool. J Mater Process Technol 33:331–345CrossRefGoogle Scholar
  25. 25.
    Yang T, Hao J, Liu G, Su HB, Chen XP, Qi YB (2014) Influence of punch shape on the fracture surface quality of hydropiercing holes. J Harbin Inst Technol 3(21):85–90Google Scholar
  26. 26.
    Yiemchaiyaphum S, Masahiko J, Thipprakmas S (2010) Die design in fine-piercing process by chamfering cutting edge. Key Eng Mater 413:219–224CrossRefGoogle Scholar
  27. 27.
    Thipprakmas S, Rojananan S, Paramaputi P (2008) An investigation of step taper-shaped punch in piercing process using finite element method. J Mater Process Technol 197:132–139CrossRefGoogle Scholar
  28. 28.
    Liu W, Hao J, Liu G, Gao G, Yuan S (2016) Influence of punch shape on geometrical profile and quality of hole piercing–flanging under high pressure. Int J Adv Manuf Technol 86:1253–1262CrossRefGoogle Scholar
  29. 29.
    Hanas WE (1972) Apparatus and method for fine blanking of parts. US3635067 Patent document. Jan. 18, 1972Google Scholar
  30. 30.
    Subramonian S, Altan T, Campbell C, Ciocirlan B (2013) Determination of forces in high speed blanking using FEM and experiments. J Mater Process Technol 213:2184–2190CrossRefGoogle Scholar
  31. 31.
    Talaśka K, Wojtkowiak D (2018) Modelling a mechanical properties of the multilayer composite materials with the polyamide core. MATEC Web of Conferences 157:02052CrossRefGoogle Scholar
  32. 32.
    Younes R, Hallal A, Fardoum F, Chehade FH (2012) Properties modeling for unidirectional composite materials. In: Hu N (ed) Composite materials and their properties Intech, Rijeka, pp 391–408Google Scholar
  33. 33.
    Holmberg S, Persson K, Petersson H (1999) Nonlinear mechanical behaviour and analysis of wood and fibre materials. Comput Struct 72:459–480CrossRefzbMATHGoogle Scholar
  34. 34.
    Pal B, Haseebuddin MR (2012) Analytical estimation of elastic properties of polypropylene fiber matrix composite by finite element analysis. Adv Mat Phys and Chem 2:23–30CrossRefGoogle Scholar
  35. 35.
    Case J, Chilver L, Ross C (1999) Lateral deflections of circular plates. In: Strength of Materials and Structures. Wiley, London, pp 458–491Google Scholar
  36. 36.
    Gujar PS, Ladhane KB (2015) Bending analysis of simply supported and clamped circular plate. SSRG Int J Civ Eng (SSRG-IJCE) 5(2):69–75Google Scholar
  37. 37.
    Zyczkowski M (1981) Combined loadings in theory of plasticity. PWN, Warsaw, pp 35–39Google Scholar
  38. 38.
    Lubarda VA, Benson DJ, Meyers MA (2003) Strain-rate effects in rheological models inelastic response. Int J Plast 19:1097–1118CrossRefzbMATHGoogle Scholar
  39. 39.
    Marques SPC, Creus GJ (2012) Computational viscoelasticity, Springer, pp 13–15Google Scholar
  40. 40.
    Fleury E, Ha JS (1998) Small punch tests to estimate the mechanical properties of steels for steam power plant: I. Mechanical strength. Int J Press Vessel Pip 75:699–706CrossRefGoogle Scholar
  41. 41.
    Bruchhausen M, Holmström S, Simonovski I, Austin T, Lapetite JM, Ripplinger S, de Hann F (2016) Recent developments in small punch testing: tensile properties and DBTT. Theor Appl Fract Mech 86:2–10CrossRefGoogle Scholar
  42. 42.
    Singh J, Sharma NK, Sehgal SS (2017) Small punch testing: an alternative testing technique to evaluate tensile behavior of cortical bone. J Mech in Med and Biol 17:06Google Scholar
  43. 43.
    Amaral R, Teixeira P, Azinpour E, Santos AD, Cesar de Sa J (2016) Evaluation of ductile failure models in sheet metal forming. MATEC Web of Conferences 80:1–6CrossRefGoogle Scholar
  44. 44.
    Dassault Systmes Simulia Corp (2013) Abaqus User’s Manual: Version 6.13-2. Accesed 31 January 2018
  45. 45.
    Shetty N, Shahabaz SM, Sharma SS, Shetty SD (2017) A review on finite element method for machining of composite materials. Compos Struct 176:790–802CrossRefGoogle Scholar
  46. 46.
    Dandekar CR, Shin YC (2012) Modeling of machining of composite materials: A review. Int J Mach Tools Manuf 57:102–121CrossRefGoogle Scholar
  47. 47.
    Garcia JJ, Rangel C, Ghavami K (2012) Experiments with rings to determine the anisotropic elastic constants of bamboo. Constr Build Mater 31:52–57CrossRefGoogle Scholar
  48. 48.
    Vasic S, Smith I, Landis E (2005) Finite element techniques and models for wood fracture mechanics. Wood Sci Technol 39 :3–17CrossRefGoogle Scholar
  49. 49.
    Torres LA, Ghavami K, Garcia JJ (2007) A transversely isotropic law for the determination of the circumferential young’s modulus of bamboo with diametric compression tests. Lat Am Appl Res 37:255–260Google Scholar
  50. 50.
    Dandekar CR, Shin YC (2009) Multi-step 3D finite element modeling of subsurface damage in machining particulate reinforced metal matrix composites. Composites Part A 40(8):1231– 1239CrossRefGoogle Scholar
  51. 51.
    Zhou L, Huang ST, Wang D, Yu XL (2011) Finite element and experimental studies of the cutting process of SiCp/Al composites with PCD tools. Int J Adv Manuf Technol 52:619– 626CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Dominik Wojtkowiak
    • 1
    Email author
  • Krzysztof Talaśka
    • 1
  • Ireneusz Malujda
    • 1
  • Grzegorz Domek
    • 2
  1. 1.Faculty of Machines and Transport, Basics of Machine DesignPoznan University of TechnologyPoznańPoland
  2. 2.Faculty of Mathematics, Physics, Technical SciencesKazimierz Wielki University in BydgoszczBydgoszczPoland

Personalised recommendations