Modeling and optimization of thermal characteristics for roll grinders

  • Zhihang Lin
  • Jianfu Zhang
  • Pingfa Feng
  • Dingwen Yu
  • Zhijun Wu


The thermal deformation has a significant effect on the processing precision of the machine tool. In this paper, a simulation model and an experimental method of the thermal performance were proposed for a roll grinder. The calculation methods of thermal boundary conditions including the heat power caused by the spindle motor with water cooling, headstock motor with air cooling and hydrodynamic bearings, the convective heat transfer coefficients of the rotating surface at different spindle speeds, and machine tool contact resistance were provided to establish a high-precision FEM model. Based on the achieved key temperature points in the simulation, thermal characteristic experiments were carried out at different spindle speeds with 18 temperature sensors and three displacement sensors. The experimental results of the temperature field and thermal displacement were then compared with the simulation results to verify the effectiveness of the constructed finite element model. Finally, three kinds of optimization schemes of the roll grinder structure were discussed to further improve the thermal performance. The simulation results indicated that the thermal deformation of the spindle decreased in the X- and Y-axis directions.


Roll grinder Finite element method Thermal characteristics Structure optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Funding information

This research was financially supported by the National Nature Science Foundation of China (Grant no. 51575301), Shenzhen Foundational Research Project (Grant no. JCYJ20160428181916222), and Key National Science and Technology Projects of China (Grant no. 2015ZX04014021-04).


  1. 1.
    Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tools—a review. Part II: thermal errors Int J Mach Tool Manuf 40(9):1257–1284. Google Scholar
  2. 2.
    Rahman M, Mansur MA, Feng Z (1995) Design, fabrication and evaluation of a steel fibre reinforced concrete column for grinding machines. MATER DESIGN 16(4):205–209. CrossRefGoogle Scholar
  3. 3.
    Zhang JF, Feng PF, Chen C, Yu DW, Wu ZJ (2013) A method for thermal performance modeling and simulation of machine tools. Int J Adv Manuf Technol 68(5–8):1517–1527.
  4. 4.
    Bucuresteanu A, Prodan D, Balan E, Motomancea A (2016) Modernization of cooling units for tools and workpieces in machine tools. Proc Manuf Syst 11(1), 41):41–46Google Scholar
  5. 5.
    Zhang JF, Feng PF, Wu ZJ, Yu DW, Chen C (2013) Thermal structure design and analysis of a machine tool headstock. Mechanika 19(4):478–485. CrossRefGoogle Scholar
  6. 6.
    He Y, Fu JZ, Chen ZC (2010) Research on the thermal property of machine tool slides based on cellular structures. Key Eng Mater 426-427:422–426. CrossRefGoogle Scholar
  7. 7.
    Jiao Y, Sun LJ, Hong HB, Yin YH (2015) Material thermal conductivity determination and structure optimization of ultra-precision optical machine tool. J Mech Eng 51(1):167–175. CrossRefGoogle Scholar
  8. 8.
    Ramesh R, Mannan MA, Poo AN (2003) Thermal error measurement and modelling in machine tools. Part I Influence of varying operating conditions. Int J Mach Tool Manuf 43(4):391–404. CrossRefGoogle Scholar
  9. 9.
    Cui LY, Gao WG, Zhang DW, Zhang HJ, Han L (2011) Thermal error compensation for telescopic spindle of CNC machine tool based on SIEMENS 840D system. Trans Tianjin Univ 17(5):340–343. CrossRefGoogle Scholar
  10. 10.
    Pahk HJ, Lee SW (2002) Thermal error measurement and real time compensation system for CNC machine tools incorporating the spindle thermal error and the feed axis thermal error. Int J Adv Manuf Technol 20:487–494. CrossRefGoogle Scholar
  11. 11.
    Luo W (2010) Thermal error measurement and compensation of CNC machine tools. the Degree of Master of Engineering in Nanjing University of Aeronautics and AstronauticsGoogle Scholar
  12. 12.
    Wang LP, Wang HT, Li TM, Li FC (2015) A hybrid thermal error modeling method of heavy machine tools in z-axis. Int J Adv Manuf Technol 80(1–4):389–400. CrossRefGoogle Scholar
  13. 13.
    Zhang T, Ye WH, Liang RJ, Lou PH, Yang XL (2013) Temperature variable optimization for precision machine tool thermal error compensation on optimal threshold. Chin J Mech Eng-En 26(1):158–165. CrossRefGoogle Scholar
  14. 14.
    Yang J, Shi H, Feng B, Zhao L, Ma C, Mei XS (2015) Thermal error modeling and compensation for a high-speed motorized spindle. Int J Adv Manuf Tech 77(5–8):1005–1017. CrossRefGoogle Scholar
  15. 15.
    Yan J, Yang J (2009) Application of synthetic grey correlation theory on thermal point optimization for machine tool thermal error compensation. Int J Adv Manuf Technol 43(11):1124–1132. CrossRefGoogle Scholar
  16. 16.
    Ruijun L, Wenhua Y, Zhang HH, Qifan Y (2012) The thermal error optimization models for CNC machine tools. Int J Adv Manuf Technol 63(9–12):1167–1176. CrossRefGoogle Scholar
  17. 17.
    Yang H, Ni J (2005) Dynamic neural network modeling for nonlinear, nonstationary machine tool thermally induced error. Int J Mach Tools Manuf 45:455–465. CrossRefGoogle Scholar
  18. 18.
    Abdulshahed AM, Longstaff AP, Fletcher S, Myers A (2015) Thermal error modelling of machine tools based on ANFIS with fuzzy c-means clustering using a thermal imaging camera. Appl Math Model 39:1837–1852. CrossRefGoogle Scholar
  19. 19.
    Gomez-Acedo E, Olarra A, Orive J, LopezdelaCalle L (2013) Methodology for the design of a thermal distortion compensation for large machine tools based in state-space representation with Kalman filter. Int J Mach Tools Manuf 75:100–108. CrossRefGoogle Scholar
  20. 20.
    Qianjian G, Jianguo Y (2011) Application of projection pursuit regression to thermal error modeling of a CNC machine tool. Int J Adv Manuf Technol 55(5–8):623–629. CrossRefGoogle Scholar
  21. 21.
    Yildiz BS, Lekesiz H, Yildiz AR (2016) Structural design of vehicle components using gravitational search and charged system search algorithms. Materialprufung 58(1):79–81Google Scholar
  22. 22.
    Guo QJ, Xu RF, Yang TY, He L, Cheng X, Li ZY, Yang JG (2015) Application of GRAM and AFSACA-BPN to thermal error optimization modeling of CNC machine tools. Int J Adv Manuf Technol 83:995–1002. CrossRefGoogle Scholar
  23. 23.
    Yildiz AR, Solanki KN (2012) Multi-objective optimization of vehicle crashworthiness using a new particle swarm based approach. Int J Adv Manuf Technol 59(1–4):367–376CrossRefGoogle Scholar
  24. 24.
    Yildiz AR (2013) Cuckoo search algorithm for the selection of optimal machining parameters in milling operations. Int J Adv Manuf Technol 64(1–4):55–61CrossRefGoogle Scholar
  25. 25.
    Kiani M, Yildiz AR (2016) A comparative study of non-traditional methods for vehicle crashworthiness and nvh optimization. Arch Comput Method E 23(4):723–734MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Yildiz BS (2017) A comparative investigation of eight recent population-based optimisation algorithms for mechanical and structural design problems. Int J Vehicle Des 73(1/2/3):208CrossRefGoogle Scholar
  27. 27.
    Yildiz BS, Yildiz AR (2017) Moth-flame optimization algorithm to determine optimal machining parameters in manufacturing processes. Materialprufung 59(5):425–429Google Scholar
  28. 28.
    Yildiz AR (2013) Comparison of evolutionary-based optimization algorithms for structural design optimization. Eng Appl Artif Intell 26(1):327–333CrossRefGoogle Scholar
  29. 29.
    Yildiz BS, Yildiz AR (2018) Comparison of grey wolf, whale, water cycle, ant lion and sine-cosine algorithms for the optimization of a vehicle engine connecting rod. Mater Test 60(3):311–315CrossRefGoogle Scholar
  30. 30.
    Lekesiz H, Yildiz BS (2017) Fatigue-based structural optimisation of vehicle components. Int J Vehicle Des 73(1/2/3):54CrossRefGoogle Scholar
  31. 31.
    Yildiz AR, Pholdee N, Bureerat S (2017) Hybrid real-code population-based incremental learning and differential evolution for many-objective optimisation of an automotive floor-frame. Int J Vehicle Des 73(1/2/3):20CrossRefGoogle Scholar
  32. 32.
    Von Dobbeler C, Moeller F, Werr T (1953) Leitfaden der Elektrotechnik: Konstruktion elektrischer Maschinen. TeubnerGoogle Scholar
  33. 33.
    Ma MT, Taylor CM (1996) An experimental investigation of thermal effects in circular and elliptical plain journal bearings. Tribol Int 29(1):19–26CrossRefGoogle Scholar
  34. 34.
    Uhlmann E, Hu JM (2012) Thermal modelling of an HSC machining centre to predict thermal error of the feed system. Prod Eng 6(6):603–610. CrossRefGoogle Scholar
  35. 35.
    Yang ZW, Yin GF, Xin S, Hua J, Zhong KY (2011) Coupling analysis model of thermal and dynamic characteristics for high-speed motorized spindle. J Jilin Univ 41(1):100–105Google Scholar
  36. 36.
    Li DX, Feng PF, Zhang JF, Wu ZJ, Yu DW (2014) Calculation method of convective heat transfer coefficients for thermal simulation of a spindle system based on RBF neural network. Int J Adv Manuf Technol 70(5–8):1445–1454. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Zhihang Lin
    • 1
  • Jianfu Zhang
    • 1
    • 2
  • Pingfa Feng
    • 1
    • 2
    • 3
  • Dingwen Yu
    • 1
  • Zhijun Wu
    • 1
  1. 1.Department of Mechanical EngineeringTsinghua UniversityBeijingChina
  2. 2.State Key Laboratory of Tribology and Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and ControlTsinghua UniversityBeijingChina
  3. 3.Graduate School at ShenzhenTsinghua UniversityShenzhenChina

Personalised recommendations