Skip to main content
Log in

Modeling and optimization of thermal characteristics for roll grinders

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The thermal deformation has a significant effect on the processing precision of the machine tool. In this paper, a simulation model and an experimental method of the thermal performance were proposed for a roll grinder. The calculation methods of thermal boundary conditions including the heat power caused by the spindle motor with water cooling, headstock motor with air cooling and hydrodynamic bearings, the convective heat transfer coefficients of the rotating surface at different spindle speeds, and machine tool contact resistance were provided to establish a high-precision FEM model. Based on the achieved key temperature points in the simulation, thermal characteristic experiments were carried out at different spindle speeds with 18 temperature sensors and three displacement sensors. The experimental results of the temperature field and thermal displacement were then compared with the simulation results to verify the effectiveness of the constructed finite element model. Finally, three kinds of optimization schemes of the roll grinder structure were discussed to further improve the thermal performance. The simulation results indicated that the thermal deformation of the spindle decreased in the X- and Y-axis directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tools—a review. Part II: thermal errors Int J Mach Tool Manuf 40(9):1257–1284. https://doi.org/10.1016/S0890-6955(00)00010-9

    Google Scholar 

  2. Rahman M, Mansur MA, Feng Z (1995) Design, fabrication and evaluation of a steel fibre reinforced concrete column for grinding machines. MATER DESIGN 16(4):205–209. https://doi.org/10.1016/0261-3069(95)00038-0

    Article  Google Scholar 

  3. Zhang JF, Feng PF, Chen C, Yu DW, Wu ZJ (2013) A method for thermal performance modeling and simulation of machine tools. Int J Adv Manuf Technol 68(5–8):1517–1527. https://doi.org/10.1007/s00170-013-4939-4

  4. Bucuresteanu A, Prodan D, Balan E, Motomancea A (2016) Modernization of cooling units for tools and workpieces in machine tools. Proc Manuf Syst 11(1), 41):41–46

    Google Scholar 

  5. Zhang JF, Feng PF, Wu ZJ, Yu DW, Chen C (2013) Thermal structure design and analysis of a machine tool headstock. Mechanika 19(4):478–485. https://doi.org/10.5755/j01.mech.19.4.5044

    Article  Google Scholar 

  6. He Y, Fu JZ, Chen ZC (2010) Research on the thermal property of machine tool slides based on cellular structures. Key Eng Mater 426-427:422–426. https://doi.org/10.4028/www.scientific.net/KEM.426-427.422

    Article  Google Scholar 

  7. Jiao Y, Sun LJ, Hong HB, Yin YH (2015) Material thermal conductivity determination and structure optimization of ultra-precision optical machine tool. J Mech Eng 51(1):167–175. https://doi.org/10.3901/JME.2015.01.167

    Article  Google Scholar 

  8. Ramesh R, Mannan MA, Poo AN (2003) Thermal error measurement and modelling in machine tools. Part I Influence of varying operating conditions. Int J Mach Tool Manuf 43(4):391–404. https://doi.org/10.1016/S0890-6955(02)00263-8

    Article  Google Scholar 

  9. Cui LY, Gao WG, Zhang DW, Zhang HJ, Han L (2011) Thermal error compensation for telescopic spindle of CNC machine tool based on SIEMENS 840D system. Trans Tianjin Univ 17(5):340–343. https://doi.org/10.1007/s12209-011-1619-z

    Article  Google Scholar 

  10. Pahk HJ, Lee SW (2002) Thermal error measurement and real time compensation system for CNC machine tools incorporating the spindle thermal error and the feed axis thermal error. Int J Adv Manuf Technol 20:487–494. https://doi.org/10.1007/s001700200182

    Article  Google Scholar 

  11. Luo W (2010) Thermal error measurement and compensation of CNC machine tools. the Degree of Master of Engineering in Nanjing University of Aeronautics and Astronautics

  12. Wang LP, Wang HT, Li TM, Li FC (2015) A hybrid thermal error modeling method of heavy machine tools in z-axis. Int J Adv Manuf Technol 80(1–4):389–400. https://doi.org/10.1007/s00170-015-6988-3

    Article  Google Scholar 

  13. Zhang T, Ye WH, Liang RJ, Lou PH, Yang XL (2013) Temperature variable optimization for precision machine tool thermal error compensation on optimal threshold. Chin J Mech Eng-En 26(1):158–165. https://doi.org/10.3901/CJME.2013.01.158

    Article  Google Scholar 

  14. Yang J, Shi H, Feng B, Zhao L, Ma C, Mei XS (2015) Thermal error modeling and compensation for a high-speed motorized spindle. Int J Adv Manuf Tech 77(5–8):1005–1017. https://doi.org/10.1007/s00170-014-6535-7

    Article  Google Scholar 

  15. Yan J, Yang J (2009) Application of synthetic grey correlation theory on thermal point optimization for machine tool thermal error compensation. Int J Adv Manuf Technol 43(11):1124–1132. https://doi.org/10.1007/s00170-008-1791-z

    Article  Google Scholar 

  16. Ruijun L, Wenhua Y, Zhang HH, Qifan Y (2012) The thermal error optimization models for CNC machine tools. Int J Adv Manuf Technol 63(9–12):1167–1176. https://doi.org/10.1007/s00170-012-3978-6

    Article  Google Scholar 

  17. Yang H, Ni J (2005) Dynamic neural network modeling for nonlinear, nonstationary machine tool thermally induced error. Int J Mach Tools Manuf 45:455–465. https://doi.org/10.1016/j.ijmachtools.2004.09.004

    Article  Google Scholar 

  18. Abdulshahed AM, Longstaff AP, Fletcher S, Myers A (2015) Thermal error modelling of machine tools based on ANFIS with fuzzy c-means clustering using a thermal imaging camera. Appl Math Model 39:1837–1852. https://doi.org/10.1016/j.apm.2014.10.016

    Article  Google Scholar 

  19. Gomez-Acedo E, Olarra A, Orive J, LopezdelaCalle L (2013) Methodology for the design of a thermal distortion compensation for large machine tools based in state-space representation with Kalman filter. Int J Mach Tools Manuf 75:100–108. https://doi.org/10.1016/j.ijmachtools.2013.09.005

    Article  Google Scholar 

  20. Qianjian G, Jianguo Y (2011) Application of projection pursuit regression to thermal error modeling of a CNC machine tool. Int J Adv Manuf Technol 55(5–8):623–629. https://doi.org/10.1007/s00170-010-3114-4

    Article  Google Scholar 

  21. Yildiz BS, Lekesiz H, Yildiz AR (2016) Structural design of vehicle components using gravitational search and charged system search algorithms. Materialprufung 58(1):79–81

    Google Scholar 

  22. Guo QJ, Xu RF, Yang TY, He L, Cheng X, Li ZY, Yang JG (2015) Application of GRAM and AFSACA-BPN to thermal error optimization modeling of CNC machine tools. Int J Adv Manuf Technol 83:995–1002. https://doi.org/10.1007/s00170-015-7660-7

    Article  Google Scholar 

  23. Yildiz AR, Solanki KN (2012) Multi-objective optimization of vehicle crashworthiness using a new particle swarm based approach. Int J Adv Manuf Technol 59(1–4):367–376

    Article  Google Scholar 

  24. Yildiz AR (2013) Cuckoo search algorithm for the selection of optimal machining parameters in milling operations. Int J Adv Manuf Technol 64(1–4):55–61

    Article  Google Scholar 

  25. Kiani M, Yildiz AR (2016) A comparative study of non-traditional methods for vehicle crashworthiness and nvh optimization. Arch Comput Method E 23(4):723–734

    Article  MathSciNet  MATH  Google Scholar 

  26. Yildiz BS (2017) A comparative investigation of eight recent population-based optimisation algorithms for mechanical and structural design problems. Int J Vehicle Des 73(1/2/3):208

    Article  Google Scholar 

  27. Yildiz BS, Yildiz AR (2017) Moth-flame optimization algorithm to determine optimal machining parameters in manufacturing processes. Materialprufung 59(5):425–429

    Google Scholar 

  28. Yildiz AR (2013) Comparison of evolutionary-based optimization algorithms for structural design optimization. Eng Appl Artif Intell 26(1):327–333

    Article  Google Scholar 

  29. Yildiz BS, Yildiz AR (2018) Comparison of grey wolf, whale, water cycle, ant lion and sine-cosine algorithms for the optimization of a vehicle engine connecting rod. Mater Test 60(3):311–315

    Article  Google Scholar 

  30. Lekesiz H, Yildiz BS (2017) Fatigue-based structural optimisation of vehicle components. Int J Vehicle Des 73(1/2/3):54

    Article  Google Scholar 

  31. Yildiz AR, Pholdee N, Bureerat S (2017) Hybrid real-code population-based incremental learning and differential evolution for many-objective optimisation of an automotive floor-frame. Int J Vehicle Des 73(1/2/3):20

    Article  Google Scholar 

  32. Von Dobbeler C, Moeller F, Werr T (1953) Leitfaden der Elektrotechnik: Konstruktion elektrischer Maschinen. Teubner

  33. Ma MT, Taylor CM (1996) An experimental investigation of thermal effects in circular and elliptical plain journal bearings. Tribol Int 29(1):19–26

    Article  Google Scholar 

  34. Uhlmann E, Hu JM (2012) Thermal modelling of an HSC machining centre to predict thermal error of the feed system. Prod Eng 6(6):603–610. https://doi.org/10.1007/s11740-012-0406-6

    Article  Google Scholar 

  35. Yang ZW, Yin GF, Xin S, Hua J, Zhong KY (2011) Coupling analysis model of thermal and dynamic characteristics for high-speed motorized spindle. J Jilin Univ 41(1):100–105

    Google Scholar 

  36. Li DX, Feng PF, Zhang JF, Wu ZJ, Yu DW (2014) Calculation method of convective heat transfer coefficients for thermal simulation of a spindle system based on RBF neural network. Int J Adv Manuf Technol 70(5–8):1445–1454. https://doi.org/10.1007/s00170-013-5386-y

    Article  Google Scholar 

Download references

Funding

This research was financially supported by the National Nature Science Foundation of China (Grant no. 51575301), Shenzhen Foundational Research Project (Grant no. JCYJ20160428181916222), and Key National Science and Technology Projects of China (Grant no. 2015ZX04014021-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Zhang, J., Feng, P. et al. Modeling and optimization of thermal characteristics for roll grinders. Int J Adv Manuf Technol 97, 993–1004 (2018). https://doi.org/10.1007/s00170-018-2016-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-2016-8

Keywords

Navigation