Skip to main content
Log in

A robust and self-tuning speed control for permanent magnet synchronous motors via meta-heuristic optimization

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In a reconfigurable manufacturing scenario, control system design needs innovative approaches to face the rapid changes in hardware and software modules. The control system should be able to automatically tune its parameters to enhance machine performances and dynamically adapt to different control objectives (e.g., minimize control efforts or maximize tracking performances) while preserving at the same time stability and robustness properties. In this paper, a robust control system for permanent magnet synchronous motors (PMSMs), together with an online self-tuning method, is presented. In particular, a robust discrete-time variable structure control (VSC) has been designed. A heuristic bio-inspired approach has been then implemented on a digital signal processor (DSP) to find the VSC parameter set which minimizes a specific objective function each time a novel speed reference is provided. Experimental results on a PMSM motor show the effectiveness of the proposed controller and tuning method, with noticeable improvements with respect to the original manufacturer-designed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lasi H, Fettke P, Kemper HG, Feld T, Hoffmann M (2014) Industry 4.0. Bus Inf Syst Eng 6(4):239–242

    Article  Google Scholar 

  2. Lee J, Bagheri B, Kao HA (2015) A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf Lett 3(Supplement C):18–23

    Article  Google Scholar 

  3. Fogliatto FS, da Silveira GJ, Borenstein D (2012) The mass customization decade: an updated review of the literature. Int J Prod Econ 138(1):14–25

    Article  Google Scholar 

  4. Tieng H, Chen CF, Cheng FT, Yang HC (2017) Automatic virtual metrology and target value adjustment for mass customization. IEEE Robot Autom Lett 2(2):546–553

    Article  Google Scholar 

  5. Mourtzis D (2016) Challenges and future perspectives for the life cycle of manufacturing networks in the mass customisation era. Logist Res 9(1):2

    Article  Google Scholar 

  6. Mourtzis D, Doukas M, Psarommatis F (2015) A toolbox for the design, planning and operation of manufacturing networks in a mass customisation environment. J Manuf Syst 36:274–286

    Article  Google Scholar 

  7. Koren Y (2006) General RMS characteristics. Comparison with dedicated and flexible systems. Springer, Berlin, pp 27–45

    Google Scholar 

  8. Mehrabi MG, Ulsoy AG, Koren Y (2000) Reconfigurable manufacturing systems: key to future manufacturing. J Intell Manuf 11(4):403–419

    Article  Google Scholar 

  9. Rösiö C, Säfsten K (2013) Reconfigurable production system design—theoretical and practical challenges. J Manuf Technol Manag 24(7):998–1018

    Article  Google Scholar 

  10. Renzi C, Leali F, Cavazzuti M, Andrisano AO (2014) A review on artificial intelligence applications to the optimal design of dedicated and reconfigurable manufacturing systems. Int J Adv Manuf Technol 72(1):403–418

    Article  Google Scholar 

  11. Urbanic RJ, Hedrick RW (2015) A matrix-based framework for assessing machine tool reconfiguration alternatives. Int J Adv Manuf Technol 81(9):1893–1919

    Article  Google Scholar 

  12. Rodriguez J, Kennel RM, Espinoza JR, Trincado M, Silva CA, Rojas CA (2012) High-performance control strategies for electrical drives: an experimental assessment. IEEE Trans Ind Electron 59(2):812–820

    Article  Google Scholar 

  13. Hahn I (2012) Heuristic structural optimization of the permanent magnets used in a surface mounted permanent-magnet synchronous machine. IEEE Trans Magn 48(1):118–127

    Article  Google Scholar 

  14. Joshi Y, Parikh K, Yadav VK (2014) Field oriented control of pmsm using improved space vector modulation technique. Int J Digit Appl Contemp Res 2(8):25–32

    Google Scholar 

  15. Adhavan B, Kuppuswamy A, Jayabaskaran G, Jagannathan V (2011) Field oriented control of permanent magnet synchronous motor (pmsm) using fuzzy logic controller. In: IEEE recent advances in intelligent computational systems (RAICS), pp 587–592

  16. Tursini M, Parasiliti F, Zhang D (2002) Real-time gain tuning of pi controllers for high-performance pmsm drives. IEEE Trans Ind Appl 38(4):1018–1026

    Article  Google Scholar 

  17. Li YF, Wikander J (2004) Model reference discrete-time sliding mode control of linear motor precision servo systems. Mechatronics 14(7):835–851

    Article  Google Scholar 

  18. Li S, Zhou M, Yu X (2013) Design and implementation of terminal sliding mode control method for PMSM speed regulation system. IEEE Trans Ind Inf 9(4):1879–1891

    Article  Google Scholar 

  19. Orlowska-Kowalska T, Tarchala G, Dybkowski M (2014) Sliding-mode direct torque control and sliding-mode observer with a magnetizing reactance estimator for the field-weakening of the induction motor drive. Math Comput Simul 98:31–45

    Article  MathSciNet  MATH  Google Scholar 

  20. Utkin VI (1993) Sliding mode control design principles and applications to electric drives. IEEE Trans Ind Electron 40(1):23–36

    Article  Google Scholar 

  21. Veselic B, Perunicic-Drazenovic B, Milosavljevic C (2008) High-performance position control of induction motor using discrete-time sliding-mode control. IEEE Trans Ind Electron 55(11):3809–3817

    Article  Google Scholar 

  22. Efe MO, Kaynak O, Wilamowski BM (2000) Stable training of computationally intelligent systems by using variable structure systems technique. IEEE Trans Ind Electron 47(2):487–496

    Article  Google Scholar 

  23. Lin FJ, Chou WD (2003) An induction motor servo drive using sliding-mode controller with genetic algorithm. Electr Power Syst Res 64(2):93–108

    Article  Google Scholar 

  24. Lin SC, Chen YY (1997) Design of self-learning fuzzy sliding mode controllers based on genetic algorithms. Fuzzy Sets Syst 86(2):139–153

    Article  MathSciNet  MATH  Google Scholar 

  25. dos Santos Coelho L, Krohling RA (2003) Discrete variable structure control design based on lamarckian evolution. In: Advances in Soft Computing. Springer, Berlin, pp 361–370

  26. Su JP, Chen TM, Wang CC (2001) Adaptive fuzzy sliding mode control with ga-based reaching laws. Fuzzy Sets Syst 120(1):145–158

    Article  MathSciNet  MATH  Google Scholar 

  27. You KS, Lee MC, Yoo WS (2004) Sliding mode controller with sliding perturbation observer based on gain optimization using genetic algorithm. KSME Int J 18(4):630

    Article  Google Scholar 

  28. Taherkhorsandi M, Castillo-Villar KK, Mahmoodabadi MJ, Janaghaei F, Mortazavi Yazdi SM (2015) Optimal sliding and decoupled sliding mode tracking control by multi-objective particle swarm optimization and genetic algorithms. Springer International Publishing, Cham, pp 43–78

    Google Scholar 

  29. dos Santos Coelho L, Ayala HVH, Coelho AAR (2015) Variable structure control optimized by differential evolution approach applied to continuous stirred tank reactor. Chem Eng Res Des 100:248–260

    Article  Google Scholar 

  30. Storn R, Price K (1995) Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces. International Computer Science Institute, Berkeley

    MATH  Google Scholar 

  31. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  32. Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2014) A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif Intell Rev 42(1):21–57

    Article  Google Scholar 

  33. Krause PC, Wasynczuk O, Sudhoff SD (2002) Modern analysis of electric machinery and drive systems. Wiley, New York

    Book  Google Scholar 

  34. Vaclavek P, Blaha P (2013) Pmsm model discretization for model predictive control algorithms. In: IEEE/SICE international symposium on system integration (SII), pp 13–18

  35. Documentation of the MCK28335-Pro motion control kit (Accessed: 16 Jan 2018). http://www.technosoftmotion.com/de/tools/motion-control-kits/mck28335

  36. Datasheet of the Delfino TMS320f28335 DSP motion controller (Accessed: 16 Jan 2018). http://www.ti.com/product/TMS320F28335/datasheet

  37. Hong K, Gan WS, Chong YK, Chew K, Lee C, Koh T (2000) An integrated environment for rapid prototyping of DSP algorithms using Matlab and texas instruments’ TMS320c30. Microprocess Microsyst 24(7):349–363

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucio Ciabattoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciabattoni, L., Ferracuti, F., Foresi, G. et al. A robust and self-tuning speed control for permanent magnet synchronous motors via meta-heuristic optimization. Int J Adv Manuf Technol 96, 1283–1292 (2018). https://doi.org/10.1007/s00170-018-1690-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-1690-x

Keywords

Navigation