Skip to main content
Log in

Visualization of particle jet in cold spray by infrared camera: feasibility tests

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this article, the feasibility study of application of the infrared camera for visualization of the particle jet in cold spray was performed. Stainless steel particles accelerated by the standard cold spray nozzle at spray parameters typical for cold spray deposition were used in experiments. Experimental results show that the infrared camera is capable to detect the particle trajectories due to significant temperature contrast and could be used as a robust technique for the powder trajectory visualization. Image treatment procedure allows to provide the particle jet profile at different distances from the nozzle exit. Obtained frames confirm the presence of particle collisions in the nozzle as well as in the free jet. Additional particle track velocimetry (PTV) measurements showed that the particle velocity in experiments was in the range 500–700 m/s that are the typical values for cold spraying of stainless steel powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Papyrin A, Kosarev V, Klinkov S, Alkhimov A, Fomin V (2007) Cold spray technology. Elsevier Science, Amsterdam

    Google Scholar 

  2. Assadi H, Kreye H, Gartner F, Klassen T (2016) Cold spraying—a materials perspective. Acta Mater 116:382–407. https://doi.org/10.1016/j.actamat.2016.06.034

    Article  Google Scholar 

  3. Vilafuerte J (2015) Modern cold spray: theory process and applications. Springer International Publishing, Switzerland. https://doi.org/10.1007/978-3-319-16772-5

    Book  Google Scholar 

  4. Rokni MR, Widener CA, Champagne VK, Crawford GA, Nutt SR (January 2017) The effects of heat treatment on 7075 Al cold spray deposits. Surface and Coatings Technology, Volume 310(25):278–285. https://doi.org/10.1016/j.surfcoat.2016.10.064

    Article  Google Scholar 

  5. Tao Y, Xiong T, Sun C, Kong L, Cui X, Li T, Song G-L (October 2010) Microstructure and corrosion performance of a cold sprayed aluminium coating on AZ91D magnesium alloy. Corros Sci 52(10):3191–3197. https://doi.org/10.1016/j.corsci.2010.05.023

    Article  Google Scholar 

  6. (2007) Effect of substrate temperature on the formation mechanism of cold-sprayed aluminum, zinc and tin coatings, Effect of Substrate Temperature on the Formation Mechanism of Cold-Sprayed Aluminum, Zinc and Tin Coatings. J Thermal Spray Technol 16(5–6):619–626. https://doi.org/10.1007/s11666-007-9091-y

  7. Wen-Ya Li, Chang-Jiu Li, Guan-Jun Yang, Effect of impact-induced melting on interface microstructure and bonding of cold-sprayed zinc coating, Applied Surface Science, Volume 257, Issue 5, 15 December 2010, Pages 1516–1523

  8. Coddet P, Verdy C, Coddet C, Debray F, Lecouturier F (September 2015) Mechanical properties of thick 304L stainless steel deposits processed by He cold spray. Surface and Coatings Technology, Volume 277(15):74–80. https://doi.org/10.1016/j.surfcoat.2015.07.001

    Article  Google Scholar 

  9. Sova A, Grigoriev S, Okunkova A, Smurov I (November 2013) Cold spray deposition of 316L stainless steel coatings on aluminium surface with following laser post-treatment. Surface and Coatings Technology, Volume 235(25):283–289. https://doi.org/10.1016/j.surfcoat.2013.07.052

    Article  Google Scholar 

  10. Xian-ming MENG, Jun-bao ZHANG, Wei HAN, Jie ZHAO (2012) Fracture behavior of cold sprayed 304 stainless steel coating during cold rolling. J Iron Steel Res Int 19(11):57–63

    Article  Google Scholar 

  11. Villa M, Dosta S, Guilemany JM (November 2013) Optimization of 316L stainless steel coatings on light alloys using cold gas spray. Surface and Coatings Technology 235(25):220–225. https://doi.org/10.1016/j.surfcoat.2013.07.036

    Article  Google Scholar 

  12. Triantou KI, Pantelis DI, Guipont V, Jeandin M (August 2015) Microstructure and tribological behavior of copper and composite copper+alumina cold sprayed coatings for various alumina contents. Wear, Volumes 336–337(15):96–107

    Article  Google Scholar 

  13. D. Seo, K. Ogawa, K. Sakaguchi, N. Miyamoto, Y. Tsuzuki, Parameter study influencing thermal conductivity of annealed pure copper coatings deposited by selective cold spray processes, surface and coatings technology, 206, 8–9, 15 January 2012, Pages 2316–2324

  14. Kim D-Y, Park J-J, Lee J-G, Kim D, Tark SJ, Ahn S, Yun JH, Gwak J, Yoon KH, Chandra S, Yoon SS (2013) Cold spray deposition of copper electrodes on silicon and glass substrates. Journal of Thermal Spray Technology 22(7):1092–1102. https://doi.org/10.1007/s11666-013-9953-4

    Article  Google Scholar 

  15. Hussain T, McCartney DG, Shipway PH, Marrocco T (2011) Corrosion behavior of cold sprayed titanium coatings and free standing deposits. Journal of Thermal Spray Technology 20(1–2):260–274. https://doi.org/10.1007/s11666-010-9540-x

    Article  Google Scholar 

  16. Wong W, Vo P, Irissou E, Ryabinin AN, Legoux J-G, Yue S (2013) Effect of particle morphology and size distribution on cold-sprayed pure titanium coatings. Journal of Thermal Spray Technology 22(7):1140–1153. https://doi.org/10.1007/s11666-013-9951-6

    Article  Google Scholar 

  17. Heli Koivuluoto, Giovanni Bolelli, Andrea Milanti, Luca Lusvarghi, Petri Vuoristo, Microstructural analysis of high-pressure cold-sprayed Ni, NiCu and NiCu + Al2O3 coatings, Surface and Coatings Technology 268, 25 April 2015, 224–229, DOI: https://doi.org/10.1016/j.surfcoat.2014.09.007

  18. Wong W, Irissou E, Vo P, Sone M, Bernier F, Legoux J-G, Fukanuma H, Yue S (2013) Cold spray forming of Inconel 718. Journal of Thermal Spray Technology 22(2–3):413–421. https://doi.org/10.1007/s11666-012-9827-1

    Article  Google Scholar 

  19. Harminder S, Sidhu TS, Karthikeyan J, Kalsi SBS (January 2015) Evaluation of characteristics and behavior of cold sprayed Ni–20Cr coating at elevated temperature in waste incinerator plant. Surface and Coatings Technology, Volume 261(15):375–384

    Google Scholar 

  20. P. Poza, C.J. Múnez, M.A. Garrido-Maneiro, S. Vezzù, S. Rech, A. Trentin, Mechanical properties of Inconel 625 cold-sprayed coatings after laser remelting. Depth sensing indentation analysis, Surface and Coatings Technology 243, 25 March 2014, Pages 51–57, DOI: https://doi.org/10.1016/j.surfcoat.2012.03.018

  21. Toibah, A.R., Sato, M., Yamada, M., Fukumoto, M. Cold-sprayed TiO2 coatings from nanostructured ceramic agglomerated powders (2016) Materials and Manufacturing Processes, 31 (11), pp. 1527–1534, DOI: https://doi.org/10.1080/10426914.2015.1090587

  22. Robotti M, Dosta S, Fernández-Rodríguez C, Hernández-Rodríguez MJ, Cano IG, Melián EP, Guilemany JM (2016) Photocatalytic abatement of NOx by C-TiO2/polymer composite coatings obtained by low pressure cold gas spraying. Applied Surface Science 362:274–280. https://doi.org/10.1016/j.apsusc.2015.11.207

    Article  Google Scholar 

  23. Schmidt K, Buhl S, Davoudi N, Godard C, Merz R, Raid I, Kerscher E, Kopnarski M, Müller-Renno C, Ripperger S, Seewig J, Ziegler C, Antonyuk S (2016) Ti surface modification by cold spraying with TiO2 microparticles. Surface Coatings Technol 309:749–758. https://doi.org/10.1016/j.surfcoat.2016.10.091

    Article  Google Scholar 

  24. H. AWAD, Samir; I. JADAAN, Riyam. STUDY THE OPTICAL PROPERTIES OF COPPER OXIDE THIN FILM DEPOSITED BY COLD SPRAY. Al-Qadisiyah J Eng Sci, [S.l.], v. 6, n. 4, p. 439–454, oct. 2017

  25. Wei J, Zang Z, Zhang Y, Wang M, Du J, Tang X (2017) Enhanced performance of light-controlled conductive switching in hybrid cuprous oxide/reduced graphene oxide (Cu2O/rGO) nanocomposites. Opt Lett 42(5):911–914. https://doi.org/10.1364/OL.42.000911

    Article  Google Scholar 

  26. Koivuluoto H, Vuoristo P (2010) Effect of powder type and composition on structure and mechanical properties of Cu + Al 2O 3 coatings prepared by using low-pressure cold spray process. J Therm Spray Technol 19(5):1081–1092. https://doi.org/10.1007/s11666-010-9491-2

    Article  Google Scholar 

  27. Champagne V, Helfritch D (2008) Electromagnetic interface shielding by the cold spray particle deposition of an aluminium-alumina matrix. J Adv Mater 40(1):20–26

    Google Scholar 

  28. Wu X, Zhou X, Cui H, Zheng X, Zhang J (2012) Deposition behavior and characteristics of cold-sprayed Cu–Cr composite deposits. J Therm Spray Technol 21(5):792–799. https://doi.org/10.1007/s11666-012-9755-0

    Article  Google Scholar 

  29. Maestracci R, Sova A, Jeandin M, J-M Malhaire I, Movchan P, Bertrand IS (2016) Deposition of composite coatings by cold spray using stainless steel 316L, copper and Tribaloy T-700 powder mixtures. Surf Coat Technol 287:1–8. https://doi.org/10.1016/j.surfcoat.2015.12.065

    Article  Google Scholar 

  30. Katanoda H, Matsuoka T, Matsuo K (2007) Experimental study on shock wave structures in constant-area passage of cold spray nozzle. J Therm Sci 16(1):40–45. https://doi.org/10.1007/s11630-007-0040-3

    Article  Google Scholar 

  31. Klinkov SV, Kosarev VF, Zaikovskii VN (2011) Influence of flow swirling and exit sFigure captionshape of barrel nozzle on cold spraying. J Therm Spray Technol 20(4):837–844. https://doi.org/10.1007/s11666-011-9621-5

    Article  Google Scholar 

  32. Fukanuma H, Ohno N, Sun B, Huang R (2006) In-flight particle velocity measurements with DPV-2000 in cold spray. Surface and Coatings Technology 201(5):1935–1941. https://doi.org/10.1016/j.surfcoat.2006.04.035

    Article  Google Scholar 

  33. Kuroda S, Molak RM, Watanabe M, Araki H, Katanoda H, Sun B, Ohno N, Fukanuma H (2013) Velocity measurement of sprayed particles and coatings fabrication of titanium alloys by high-pressure warm spray Proceedings of the International Thermal Spray Conference, pp. 263–268

  34. Meyer MC, Yin S, McDonnell KA, Stier O, Lupoi R (October 2016) Feed rate effect on particulate acceleration in cold spray under low stagnation pressure conditions. Surface and Coatings Technology, Volume 304(25):237–245. https://doi.org/10.1016/j.surfcoat.2016.07.017

    Article  Google Scholar 

  35. Jodoin B, Raletz F, Vardelle M (2006) Cold spray modeling and validation using an optical diagnostic method. Surface and Coatings Technology 200(14–15):4424–4432. https://doi.org/10.1016/j.surfcoat.2005.02.209

    Article  Google Scholar 

  36. Zahiri SH, Yang W, Jahedi M (2009) Characterization of cold spray titanium supersonic jet. Journal of Thermal Spray Technology 18(1):110–117. https://doi.org/10.1007/s11666-008-9278-x

    Article  Google Scholar 

  37. Sova A, Doubenskaia M, Grigoriev S, Okunkova A, Smurov I (2013) Parameters of the gas-powder supersonic jet in cold spraying using a mask. Journal of Thermal Spray Technology 22(4):551–556. https://doi.org/10.1007/s11666-013-9891-1

    Article  Google Scholar 

  38. Sova A, Okunkova A, Grigoriev S, Smurov I (2013) Velocity of the particles accelerated by a cold spray micronozzle: experimental measurements and numerical simulation. J Therm Spray Technol 22(1):75–80. https://doi.org/10.1007/s11666-012-9846-y

    Article  Google Scholar 

  39. Doubenskaia M, Novichenko D, Sova A, Pervoushin D (2010) Particle-in-flight monitoring in thermal spray processes. Surf Coat Technol 205(4):1092–1095. https://doi.org/10.1016/j.surfcoat.2010.07.075

    Article  Google Scholar 

  40. Legoux JG, Irissou E, Moreau C (2007) Effect of substrate temperature on the formation mechanism of cold-sprayed aluminum, zinc and tin coatings. J Therm Spray Technol 16(5):619–626. https://doi.org/10.1007/s11666-007-9091-y

    Article  Google Scholar 

  41. Sova, Alexey (2017): image2.avi. figshare, https://doi.org/10.6084/m9.figshare.5057098.v1

Download references

Acknowledgments

The work was carried out with financial support from the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST «MISiS» (№ К1-2016-030), implemented by the governmental decree dated on 16th of March 2013, N 211.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Sova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sova, A., Doubenskaia, M., Petrovskiy, P. et al. Visualization of particle jet in cold spray by infrared camera: feasibility tests. Int J Adv Manuf Technol 95, 3057–3063 (2018). https://doi.org/10.1007/s00170-017-1435-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-1435-2

Keywords

Navigation