Skip to main content
Log in

3D milling modeling: mechanical actions, strains, strain rates and temperature calculations in the three cutting zones

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Analytical and semi-analytical modelling of manufacturing processes involving material removal are of great interest to scientists and industrialists. With this type of modelling, we are able to identify optimal cutting parameters based on geometric and thermomechanical quantities, without having to carry out experimental trials or costly simulations (thus saving time and reducing costs). Compared with other machining techniques, milling involves additional complexities arising from the variation in geometric parameters in the machining configuration and in kinematic parameters when operational. This paper presents a new 3D modelling analysis applied to milling, which takes into account phenomena generated by the three-dimensional kinematics of the process. To complete this thermomechanical approach to cutting, improvements have been made to a basic model configuration. The model that has been developed can now map strains, strain rates, stresses and temperatures along the cutting edge, in the primary, secondary and tertiary shear zones. Forces and cutting moments at the theoretical tool tip are estimated at a local then a global scale, and compared with experimental results from previous work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

x c , y c :

Coordinates of a point in the secondary shear zone.

a p :

Apparent depth of cut (m.m i n − 1).

d a :

depth of plastic deformation zone (m m).

f :

Feed rate (m m).

f z :

Tooth feed rate (m m.t o o t h − 1).

r a :

Cutting edge radius (m m).

r β :

Tool nose radius (m m).

α 0 :

Clearance angle ().

ϕ :

Shear angle ().

γ 0 :

Rake angle ().

δ.t 2 :

Thickness of shear band in the secondary shear zone (m m).

α.l c :

Length of shear contact along rake face (m m).

P s1 , P s2 :

Surface power density above and below stagnation point (W.m − 2).

σ e q,S1 , σ e q,S2 :

Equivalent stress above and below stag-nation point (M P a).

\({\dot \varepsilon _{eq,S_{1}^{\prime }}}\) , \({\dot \varepsilon _{eq,S_{2}^{\prime }}}\) :

Overall strain rate above and below stag-nation point (s − 1).

h m (𝜃 1) , h m (𝜃 2):

Instantaneous cutting feed for two angle positions 𝜃 1 and 𝜃 2(m m).

ΔT :

Temperature difference ( C).

T S S Z :

Temperature in the secondary shear zone ( C).

V c h i p :

Chip speed along to cutting edge (m.s − 1).

V c :

Cutting speed (m.m i n − 1).

V g :

Sliding speed of the chip along to cutting edge (m.s − 1).

V S :

Sliding speed in the primary shear zone (m.s − 1).

V t :

Speed of material perpendicular to cutting edge (m.s − 1).

V z :

Speed of material parallel to cutting edge (m.s − 1).

K t h :

Thermal conductivity \(\left ( {W.{m^{ - 1}}.^{\circ } {C^{ - 1}}} \right )\).

a :

Thermal diffusivity \(\left ( {m^{2}.{s^{ - 1}}} \right )\).

d l i :

Elementary length of heat source (m).

R i and R i :

Distance between point M and primary heat source and image respectively.

φ2 :

Density of heat flux (W.m − 2).

References

  1. Toulouse D, Couétard Y, Cahuc O, Gérard A (1997) An experimental method for the cutting process in three dimensions. In: 5th Conference on mechanical and physical behaviour of materials under dynamic loading, vol C3. Toledo, pp 21-26

  2. Laheurte R, Cahuc O, Darnis P, Gérard A (2006) Behaviour law for cutting process. Int J Adv Manuf Technol En cours de Publ 29:17–23

    Article  Google Scholar 

  3. Cahuc O, Darnis P, Gérard A, Battaglia J-L (2001) Experimental and analytical balance sheet in turning applications. Int J Adv Manuf Technol 18(9):648–656. https://doi.org/10.1007/s001700170025

    Article  Google Scholar 

  4. Dargnat F, Darnis P, Cahuc O (2009) Analytical modelling of cutting phenomena improvements with a view to drilling modelling. Int J Mach Mach Mater 5(2):176–206. https://doi.org/10.1504/ijmmm.2009.02339

    Google Scholar 

  5. Albert G, Laheurte R, K’Nevez J-Y, Darnis P, Cahuc O (2011) Experimental milling moment model in orthogonal cutting condition: to an accurate energy balance. Int J AdvManuf Technol 55(9-12):843–854. https://doi.org/10.1007/s00170-010-3118-0

    Article  Google Scholar 

  6. Battaglia J-L, Puigsegur L, Cahuc O (2005) Estimated temperature on a machined surface using an inverse approach. Int J Exper Heat Tranfer 18(1):13–32. https://doi.org/10.1080/08916150590884826

    Article  Google Scholar 

  7. Zhang X, Ehmann KF, Yu T, Wang W (2016) Cutting forces in micro-end-milling processes. Int J Mach Tools Manuf 107(Supplement C):21-40. https://doi.org/10.1016/j.ijmachtools.2016.04.012

    Article  Google Scholar 

  8. Wojciechowski S (2015) The estimation of cutting forces and specific force coefficients during finishing ball end milling of inclined surfaces. Int J Mach Tools Manuf 89(Supplement C):110–123. https://doi.org/10.1016/j.ijmachtools.2014.10.006

    Article  Google Scholar 

  9. Wojciechowski S, Maruda RW, Nieslony P, Krolczyk GM (2016) Investigation on the edge forces in ball end milling of inclined surfaces. Int J Mech Sci 119(Supplement C):360–369. https://doi.org/10.1016/j.ijmecsci.2016.10.034

    Article  Google Scholar 

  10. Wojciechowski S, Maruda RW, Barrans S, Nieslony P, Krolczyk GM (2017) Optimisation of machining parameters during ball end milling of hardened steel with various surface inclinations. Measurement 111(Supplement C):18–28. https://doi.org/10.1016/j.measurement.2017.07.020

    Article  Google Scholar 

  11. Karagüzel U, Uysal E, Budak E, Bakkal M (2015) Analytical modeling of turn-milling process geometry, kinematics and mechanics. Int J Mach Tools Manuf 91(0):24–33. https://doi.org/10.1016/j.ijmachtools.2014.11.014

    Article  Google Scholar 

  12. Kaymakci M, Kilic ZM, Altintas Y (2012) Unified cutting force model for turning, boring, drilling and milling operations. Int J Mach Tools Manuf 34-45:54–55

    Google Scholar 

  13. Engin S (2001) Mechanics and dynamics of general milling cutters. Part II: inserted cutters. Int J Mach Tools Manuf 41 (15):2213–2231. https://doi.org/10.1016/S0890-6955(01)00046-3

    Article  Google Scholar 

  14. Kang YH, Zheng CM (2013) Mathematical modelling of chip thick-ness in micro-end-milling: a fourier modelling. Appl Math Modell 37(6):4208–4223. https://doi.org/10.1016/j.apm.2012.09.011

    Article  Google Scholar 

  15. Zhou L, Peng FY, Yan R, Yao PF, Yang CC, Li B (2015) Analytical modeling and experimental validation of micro end-milling cutting forces considering edge radius and material strengthening effects. Int J Mach Tools Manuf 97(Supplement C):29–41. https://doi.org/10.1016/j.ijmachtools.2015.07.001

    Article  Google Scholar 

  16. Yousfi W, Laheurte R, Darnis P, Cahuc O, Calamaz M (2016) 3D modelling of kinematic fields in the cutting area: application to milling. Int J Adv Manuf Technol 86:2735–2745. https://doi.org/10.1007/s00170-016-8396-8

    Article  Google Scholar 

  17. Yousfi W, Darnis P, Cahuc O, Laheurte R, Calamaz M (2015) 3D modeling of strain fields and strain rate in the cutting area: application to milling. Int J Adv Manuf Technol 1–12. https://doi.org/10.1007/s00170-015-7848-x

  18. Oxley PLB (1961) Mechanics of metal cutting. Int J Mach Tool Des Res 1(1–2):89–94

    Article  Google Scholar 

  19. Marinov VR (2001) Hybrid analytical-numerical solution for the shear angle in orthogonal metal cutting – Part II: experimental verification. Int J Mech Sci 43(2):415–426

    Article  MATH  Google Scholar 

  20. Johnson G, Cook W (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the Seventh international symposium on ballistics. The Hague, pp 541–547

  21. Komanduri R, Hou ZB (2001) Thermal modeling of the metal cutting process—part III: temperature rise distribution due to the combined effects of shear plane heat source and the tool-chip interface frictional heat source. Int J Mech Sci 43(1):89–107

    Article  MATH  Google Scholar 

  22. Royer R, Cahuc O, Gérard A (2011) Strain gradient plasticity applied to material cutting. Adv Mater Res 423:103–115. https://doi.org/10.4028/www.scientific.net/AMR.423.103

    Article  Google Scholar 

  23. Hamann JC, Grolleau V, Le Maître F (1996) Machinability improvement of steels at high cutting speeds—study of tool/work material interaction. CIRP Ann Manuf Technol 45(1):87–92. https://doi.org/10.1016/S0007-8506(07)63022-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wadii Yousfi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousfi, W., Cahuc, O., Laheurte, R. et al. 3D milling modeling: mechanical actions, strains, strain rates and temperature calculations in the three cutting zones. Int J Adv Manuf Technol 95, 1931–1940 (2018). https://doi.org/10.1007/s00170-017-1351-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-1351-5

Keywords

Navigation