Skip to main content
Log in

The multi-objective non-probabilistic interval optimization of the loading paths for T-shape tube hydroforming

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The focus of presented paper is to find a reliable Pareto front of the loading paths for T-shape tube hydroforming (THF) process using multi-objective non-probabilistic interval optimization method. Three indicators are included to measure the forming quality of THF process: the contact area is used to evaluate the calibration degree; bursting failure is estimated by the maximum thinning ratio and the protrusion height is also taken into consideration. The reliability-based degree of interval of constraints is employed to guarantee the reliability of THF process. A validated finite element model is adopted to conduct virtual experiments. The percentage contributions of the loading parameters for each indicators are calculated by the Taguchi method, and some significant parameters are identified and the dimensionality of the design variables can be reduced. The support vector regression model whose accuracy is calculated by leave-one-out cross-validated method is adopted to improve the optimization efficiency for the determination of the Pareto front. The Pareto fronts of uncertain optimization and deterministic optimization are compared, and the results show that more reliable solutions can be achieved by the presented method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmetoglu M, Altan T (2000) Tube hydroforming: state-of-the-art and future trends. J Mater Process Technol 98:25–23

    Article  Google Scholar 

  2. Dohmann F, Hartl CH (1996) Hydroforming—a method to manufacture lightweight parts. J Mater Process Technol 60:669–676

    Article  Google Scholar 

  3. Alaswad A, Benyounis KY, Olabi AG (2012) Tube hydroforming process: a reference guide. Mater Des 33:328–339

    Article  Google Scholar 

  4. Fann KJ, Hsiao PY (2003) Optimization of loading conditions for tube hydroforming. J Mater Process Technol 140:520–524

    Article  Google Scholar 

  5. Yang JB, Heon BH, Sl O (2006) Design sensitivity analysis and optimization of the hydroforming process. J Mater Process Technol 113:666–672

    Article  Google Scholar 

  6. Di Lorenzo R, Ingarao G, Chinesta F (2009) A gradient-based decomposition approach to optimize pressure path and counter punch action in Y-shaped tube hydroforming operations. Int J Adv Manuf Technol 44:49–60

    Article  Google Scholar 

  7. Di Lorenzo R, Ingarao G, Gagliardi F, Filice L (2008) Experimental validation of optimisation strategies in hydroforming of T-shaped tubes. Int J Mater Form Suppl 1:323–326

    Article  Google Scholar 

  8. Intarakumthornchai T, Aue-U-Lan Y, Kesvarakul R, Jirathearanat S (2015) Feasible pressure and axial feed path determination for fuel filler tube hydroforming by genetic algorithm. Proc IMechE Part B: J Eng Manuf 229(4):623–630

    Article  Google Scholar 

  9. Mirzaali M, Seyedkashi SMH, Liaghat GH, Moslemi Naeini H, Shojaee K, Moon YH (2012) Application of simulated annealing method to pressure and force loading optimization in tube hydroforming process. Int J Mech Sci 55:78–84

    Article  Google Scholar 

  10. Mirzaali M, Liaghat GH, Naeini HM, Seyedkashi SMH, Shojaee K (2011) Optimization of tube hydroforming process using simulated annealing algorithm. Procedia Eng 10:3012–3019

    Article  Google Scholar 

  11. Seyedkashi SMH, Naeini HM, Liaghatl GH, Mashadi MM, Mirzaali M (2012) The effect of tube dimensions on optimized pressure and force loading paths in tube hydroforming process. J Mech Sci Technol 26:1817–1822

    Article  Google Scholar 

  12. Seyedkashi SMH, Naeini HM, Moon YH (2014) Feasibility study on optimized process conditions in warm tube hydroforming. J Mech Sci Technol 28:2845–2852

    Article  Google Scholar 

  13. Zheng Z, Xu J, Shen H (2012) multi-objective optimization of the loading path in tube hydroforming process using NCGA. Appl Mech Mater, 217–219:1885–1889

  14. Ge Y, Li X, Lang L, Ruan S (2017) Optimized design of tube hydroforming loading path using multi-objective differential evolution. Int J Adv Manuf Technol 88:837–846. doi: 10.1007/s00170-016-8790-2

  15. Matteo S, Suwat J, Taylan A (2001) Adaptive FEM simulation for tube hydroforming: a geometry-based approach for wrinkle detection. CIRP Ann – Manuf Technol 50:185–190

    Article  Google Scholar 

  16. Kadkhodayan M, Moghadam AE (2012) An investigation of the optimal load paths for the hydroforming of T-shaped tubes. Int J Adv Manuf Techonol 61:73–85

    Article  Google Scholar 

  17. Kadkhodayan M, Moghadam AE (2013) Optimization of load paths in X- and Y-shaped hydroforming. Int J Mater Form 6:75–91

    Article  Google Scholar 

  18. Brooghani SYA, Khalili BK, Shahri SEE, Kang BS (2014) Loading path optimization of a hydroformed part using multilevel response surface method Int J Adv Manuf Techonol 70:1523–1531

    Google Scholar 

  19. An H, Green DE, Johrendt J (2010) Multi-objective optimization and sensitivity analysis of tube hydroforming. Int J Adv Manuf Techonol 50:67–84

    Article  Google Scholar 

  20. Ingarao G, Di Lorenzo R, Micari F (2009) Internal pressure counter punch action design in Y-shaped tube hydroforming processes: a multi-objective optimisation approach. Comput Struct 87:591–602

    Article  Google Scholar 

  21. Di Lorenzo R, Ingarao G, Chinesta F (2010) Integration of gradient based and response surface methods to develop a cascade optimi-sation strategy for Y-shaped tube hydroforming process design. Adv Eng Softw 41:336–348

    Article  MATH  Google Scholar 

  22. Alaswad A, Benyounis KY, Olabi AG (2011) Employment of finite element analysis and response surface methodology to investigate the geometrical factors in T-type bi-layered tube hydroforming. Adv Eng Softw 42:917–926

    Article  Google Scholar 

  23. Koc M, Allen T, Jiratheranat S, Altan T (2000) The use of FEA and design of experiments to establish design guidelines for simple hydroformed parts. Int J Mach Tools Manuf 40:2249–2266

    Article  Google Scholar 

  24. Huang T, Song X, Liu X (2016) The multi-objective robust optimization of the loading path in the T-shape tube hydroforming based on dual response surface model. Int J Adv Manuf Techonol 82:1595–1605

    Article  Google Scholar 

  25. Huang T, Song X, Liu M (2016) The optimization of the loading path for T-shape tube hydroforming using adaptive radial basis function. Int J Adv Manuf Techonol 82:1843–1857

    Article  Google Scholar 

  26. An H, Green DE, Johrendt J (2012) A hybrid-constrained MOGA and local search method to optimize the load path for tube hydroforming. Int J Adv Manuf Techonol 60:1017–1030

    Article  Google Scholar 

  27. An H, Green DE, Johrendt J (2013) Multi-objective optimization of loading path design in multi-stage tube forming using MOGA. Int J Mater Form 6:125–135

    Article  Google Scholar 

  28. Ingarao G, Marretta L, Di Lorenzo R (2012) A comparison between three meta-modeling optimization approaches to design a tube hydroforming process. Key Eng Mater 504–506:607–612

    Article  Google Scholar 

  29. Bonte MHA, den Boogaard AH, Huétink J (2007) A metamodel based optimisation algorithm for metal forming processes. Adv Methods Mater Form, In, pp 55–72

    MATH  Google Scholar 

  30. Zhang Y, Luen C, Wang C, Wu P (2009) Optimization for loading paths of tube hydroforming using a hybrid method. Mater Manuf Process 24(6):700–708

    Article  Google Scholar 

  31. Mohammadi F, Kashanizade H, Mashadi M (2007) Optimization using finite element analysis, neural network, and experiment in tube hydroforming of aluminium T joints. Proceedings of the institution of mechanical engineers. Part B: Eng Manuf 221:1299–1305

    Google Scholar 

  32. Ben Abdessalem A, El-Hami A (2014) Global sensitivity analysis and multi-objective optimisation of loading path in tube hydroforming process based on metamodelling techniques. Int J Adv Manuf Technol 71:753–773

    Article  Google Scholar 

  33. Ben Abdessalem A (2015) El-Hami a (2015) a probabilistic approach for optimising hydroformed structures using local surrogate models to control failures. Int J Mech Sci 96–97:143–162

    Article  Google Scholar 

  34. Huang T, Song X, Liu M (2017) The multi-objective optimization of the loading paths for T-shape tube hydroforming using adaptive support vector regression. Int J Adv Manuf Technol 88:3447–3458

    Article  Google Scholar 

  35. Strano M, Jirathearanat S, Shr SG, Altan T (2004) Virtual process development in tube hydroforming. J Mater Process Technol 146:130–136

    Article  Google Scholar 

  36. Teng B, Li K, Yuan S (2013) Optimization of loading path in hydroforming T-shape using fuzzy control algorithm. Int J Adv Manuf Techonol 69:1079–1086

    Article  Google Scholar 

  37. Manabe K, Suetake M, Koyama H, Yang M (2006) Hydroforming process optimization of aluminum alloy tube using intelligent con-trol technique. Int J Mach Tools Manuf 46:1207–1211

    Article  Google Scholar 

  38. Li S, Yang B, Zhang W, Lin Z (2008) Loading path prediction for tube hydroforming process using a fuzzy control strategy. Mater Des 210:1110–1116

    Article  Google Scholar 

  39. Ray P, Mac Donald BJ (2004) Determination of the optimal load path for tube hydroforming processes using a fuzzy load control algorithm and finite element analysis. Finite Elem Anal Des 41:173–192

    Article  Google Scholar 

  40. Aydemir A, Vree JHP, de- Brekelmans WAM, Geers MGD, Sillekens WH, Werkhoven RJ (2005) An adaptive simulation ap-proach designed for tube hydroforming processes. J Mater Process Technol 159:303–310

    Article  Google Scholar 

  41. Manabe K, Chen X, Kobayashi D, Tada K (2014) Development of in-process fuzzy control system for T-shape tube hydroforming. Procedia Eng 81:2518–2523

    Article  Google Scholar 

  42. Saboori M, Champliaud H, Gholipour J, Gakwaya A, Savoie J, Wanjara P (2014) Evaluating the flow stress of aerospace alloys for tube hydroforming process by free expansion testing. Int J Adv Manuf Techonol 72:1275–1286

    Article  Google Scholar 

  43. Li B, Metzger DR, Nye TJ (2006) Reliability analysis of the tube hydroforming process based on forming limit diagram. J Press Vessel Technol 128:402–407

    Article  Google Scholar 

  44. Li B, Nye TJ, Metzger DR (2006) Improving the reliability of the tube-hydroforming process by the Taguchi method. J Press Vessel Technol 129:242–247

    Article  Google Scholar 

  45. Ben Abdessalem A, Pagnacco E, El-Hami A (2013) Increasing the stability of T-shape tube hydroforming process under stochastic framework. Int J Adv Manuf Technol 69:1343–1357

    Article  Google Scholar 

  46. Kim J, Kang BS, Lee JK (2009) Statistical evaluation of forming limit in hydroforming process using plastic instability combined with FORM. Int J Adv Manuf Techonol 42:53–59

    Article  Google Scholar 

  47. Kim J, Song WJ, Kang BS (2009) Probabilistic modeling of stress-based FLD in tube hydroforming process. Int J Mech Sci 23:2891–2902

    Google Scholar 

  48. Ben-Haim Y, Elishakoff I (1990) Convex models of uncertainties in applied mechanics. Elsevier Science Publisher, Amsterdam

    MATH  Google Scholar 

  49. Jiang C, Han X, Lu G, Liu J (2011) Correlation analysis of non-probabilistic convex model and corresponding structural reliability technique. Comput Methods Appl Mech Engrg 200:2528–2546

    Article  MATH  Google Scholar 

  50. Jiang C, Bi RG, Lu GY, Han X (2013) Structural reliability analysis using non-probabilistic convex model. Comput Methods Appl Mech Engrg 254:83–98

    Article  MathSciNet  MATH  Google Scholar 

  51. Jiang C, Ni BY, Han X, Tao YR (2014) Non-probabilistic convex model process: a new method of time-variant uncertainty analysis and its application to structural dynamic reliability problems. Comput Methods Appl Mech Engrg 268:656–676

    Article  MathSciNet  MATH  Google Scholar 

  52. Kang Z, Zhang W (2016) Construction and application of an ellipsoidal convex model using a semi-definite programming formulation from measured data. Comput Methods Appl Mech Engrg 300:461–489

    Article  MathSciNet  Google Scholar 

  53. Chen S, Lian H, Yang X (2003) Interval eigenvalue analysis for structures with interval parameters. Finite Elem Anal Des 39:419–431

    Article  Google Scholar 

  54. Chen S, Zhang X, Chen Y (2006) Interval eigenvalues of closed-loop systems of uncertain structures. Comput Struct 84:243–253

    Article  MathSciNet  Google Scholar 

  55. Qiu Z, Ma L, Wang X (2009) Non-probabilistic interval analysis method for dynamic response analysis of nonlinear systems with uncertainty. J Sound Vib 319:431–440

    Article  Google Scholar 

  56. Qiu Z, Wang X (2003) Comparison of dynamic response of struc-tures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach. Int J Solids Struct 40:5423–5439

    Article  MATH  Google Scholar 

  57. Qiu Z, Wang X (2005) Parameter perturbation method for dynamic responses of structures with uncertain-but-bounded parameters based on interval analysis. Int J Solids Struct 42:4958–4970

    Article  MATH  Google Scholar 

  58. Huang T, Song X, Liu M (2016) A Kriging-based non-probability interval optimization of loading path in T-shape tube hydroforming. Int J Adv Manuf Technol 85:1615–1631

    Article  Google Scholar 

  59. Wu HC (2007) The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function. Eur J Oper Res 176:46–59

    Article  MathSciNet  MATH  Google Scholar 

  60. Wu HC (2009) The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objec-tive function. Eur J Oper Res 176:49–60

    Article  MATH  Google Scholar 

  61. Li F, Luo Z, Rong J, Li Q (2013) Interval multi-objective optimisation of structures using adaptive Kriging approximations. Comput Struct 119:68–84

    Article  Google Scholar 

  62. Li F, Sun G, Huang X, Rong J, Li Q (2013) Multiobjective robust optimization for crashworthiness design of foam filled thin-walled structures with random and interval uncertainties. Engrg Struct 88:111–124

    Article  Google Scholar 

  63. Li F, Li G (2010) Interval-based uncertain multi-objective optimization design of vehicle crashworthiness. CMC Comput Mater Continua 15:199–220

    Google Scholar 

  64. Gunn SR (1998) Support vector machines for classification and regression. ISIS technical report 14:85-86. Available at http://www.isis.ecs.soton.ac.uk/resources/svminfo/

  65. Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, England

    MATH  Google Scholar 

  66. Ishibuchi H, Tanaka H (1990) Multiobjective programming in optimization of the interval objective function. Eur J Oper Res 48:219–225

    Article  MATH  Google Scholar 

  67. Ma LH (2002) Research on method application of robust optimization for uncertain system. Ph.D. thesis. Zhejiang University, China

    Google Scholar 

  68. Koc M, Altan T (2002) Prediction of forming limits and parameters in the tube hydroforming process. Int J Mach Tools Manuf 42:123–138

    Article  Google Scholar 

  69. Imaninejad M, Subhash G, Loukus A (2005) Loading path optimization of tube hydroforming process. Int J Mach Tools Manuf 45:1504–1514

    Article  Google Scholar 

  70. Jirathearanat S, Hartl C, Altan T (2004) Hydroforming of Y-shapes-product and process design using FEA simulation and experiments. J Mater Process Technol 146:124–129

    Article  Google Scholar 

  71. Yuan S, Yuan W, Wang X (2006) Effect of wrinkling behavior on formability and thickness distribution in tube hydroforming. J Mater Process Technol 177:668–671

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianlun Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, T., Song, X. & Liu, M. The multi-objective non-probabilistic interval optimization of the loading paths for T-shape tube hydroforming. Int J Adv Manuf Technol 94, 677–686 (2018). https://doi.org/10.1007/s00170-017-0927-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0927-4

Keywords

Navigation