Skip to main content
Log in

The multi-objective robust optimization of the loading path in the T-shape tube hydroforming based on dual response surface model

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this study, a dual response surface model-based multi-objective robust optimization method is introduced to deal with the uncertainties in the tube hydroforming process. The objective of this study is to maximize the protrusion height and minimize the thinning ratio; meanwhile, the variations of the objectives should be minimized. A valid finite element model obtained from experimental result and LS-DYNA is employed to simulate the T-shape tube hydroforming process. To improve computation efficiency, radial basis function combined with Latin hypercube and orthogonal design sampling strategies is employed to construct dual response surface model, which are the mean and standard deviation response of the hydroforming process, respectively. The robust Pareto solutions can be obtained using NSGA-II; meanwhile, the ideal point method is used to obtain the most satisfactory solution from the Pareto solutions for the design engineers. As a conclusion, a significant improvement of the robustness can be achieved; however, the mean performance of the protrusion height has to be sacrificed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmetoglu M, Altan T (2000) Tube hydroforming: state-of-the-art and future trends. J Mater Process Technol 98:25–33

    Article  Google Scholar 

  2. Dohmann F, Hartl CH (1996) Hydroforming—a method to manufacture lightweight parts. J Mater Process Technol 60:669–676

    Article  Google Scholar 

  3. Asnafi N (1999) Analytical modelling of tube hydroforming. Thin-Walled Struct 34:295–330

    Article  Google Scholar 

  4. Asnafi N, Skogsgardh A (2000) Theoretical and experimental analysis of stroke-controlled tube hydroforming. J Mater Sci A279:95–110

    Article  Google Scholar 

  5. Xu X, Li S, Zhang W, Lina Z (2009) Analysis of thickness distribution of square-sectional hydroformed parts. J Mater Process Technol 209:158–164

    Article  Google Scholar 

  6. Manabe K, Amino M (2002) Effects of process parameters and material properties on deformation process in tube hydroforming. J Mater Process Technol 123:285–291

    Article  Google Scholar 

  7. Carleer B, Kevie G, Winter L, Veldhuizen B (2000) Analysis of the effect of material properties on the hydroforming process of tubes. J Mater Process Technol 104:158–166

    Article  Google Scholar 

  8. Fatemi A, Morovvati MR, Biglari FR (2013) The effect of tube material, microstructure, and heat treatment on process responses of tube hydroforming without axial force. Int J Adv Manuf Techonol 68:263–276

    Article  Google Scholar 

  9. Yang B, Zhang W, Li SH (2006) Analysis and finite element simulation of the tube bulge hydroforming process. Int J Adv Manuf Techonol 29:453–458

    Article  Google Scholar 

  10. Hwang YM, Lin TC, Chang WC (2007) Experiment on T-shape hydroforming with counter punch. J Mater Process Technol 192–193:243–248

    Article  Google Scholar 

  11. Alaswad A, Benyounis KY, Olabi AG (2011) Finite element comparison of single and bi-layer tube hydroforming processes. Simul Model Pract Th 19:1584–1593

    Article  Google Scholar 

  12. Yang JB, Heon BH, Sl O (2006) Design sensitivity analysis and optimization of the hydroforming process. J Mater Process Technol 113:666–672

    Article  Google Scholar 

  13. Fann KJ, Hsiao PY (2003) Optimization of loading conditions for tube hydroforming. J Mater Process Technol 140:520–524

    Article  Google Scholar 

  14. Li B, Nye TJ, Metzger DR (2006) Multi-objective optimization of forming parameters for tube hydroforming process based on the Taguchi method. Int J Adv Manuf Techonol 28:23–30

    Article  Google Scholar 

  15. Abdessalem AB, Hami AE (2014) Global sensitivity analysis and multi-objective optimization of loading path in tube hydroforming process based on metamodelling techniques. Int J Adv Manuf Techonol 71:753–773

    Article  Google Scholar 

  16. An H, Green DE, Johrendt J (2010) Multi-objective optimization and sensitivity analysis of tube hydroforming. Int J Adv Manuf Techonol 50:67–84

    Article  Google Scholar 

  17. An H, Green DE, Johrendt J (2012) A hybrid-constrained MOGA and local search method to optimize the load path for tube hydroforming. Int J Adv Manuf Techonol 60:1017–1030

    Article  Google Scholar 

  18. An H, Green DE, Johrendt J (2013) Multi-objective optimization of loading path design in multi-stage tube forming using MOGA. Int J Mater Form 6:125–135

    Article  Google Scholar 

  19. Kadkhodayan M, Moghadam AE (2012) An investigation of the optimal load paths for the hydroforming of T-shaped tubes. Int J Adv Manuf Techonol 61:73–85

    Article  Google Scholar 

  20. Kadkhodayan M, Moghadam AE (2013) Optimization of load paths in X- and Y-shaped hydroforming. Int J Mater Form 6:75–91

    Article  Google Scholar 

  21. Aue-U-Lan Y, Ngaile G, Altan T (2004) Optimizing tube hydroforming using process simulation and experimental verification. J Mater Process Technol 146:137–143

    Article  Google Scholar 

  22. Mirzaali M, Seyedkashi SMH, Liaghat GH, Moslemi Naeini H, Shojaee K, Moon YH (2012) Application of simulated annealing method to pressure and force loading optimization in tube hydroforming process. Int J Mech Sci 55:78–84

    Article  Google Scholar 

  23. Mirzaali M, Liaghat GH, Moslemi Naeini H, Seyedkashi SMH, Shojaee K (2011) Optimization of tube hydroforming process using simulated annealing algorithm. Procedia Eng 10:3012–3019

    Article  Google Scholar 

  24. Abedrabbo N, Worswick M, Mayer R, Riemsdijk I (2009) Optimization methods for the tube hydroforming process applied to advanced high-strength steels with experimental verification. J Mater Process Technol 209:110–123

    Article  Google Scholar 

  25. Li S, Yang B, Zhang W, Lin Z (2008) Loading path prediction for tube hydroforming process using a fuzzy control strategy. Mater Des 210:1110–1116

    Article  Google Scholar 

  26. Teng B, Li K, Yuan S (2013) Optimization of loading path in hydroforming T-shape using fuzzy control algorithm. Int J Adv Manuf Techonol 69:1079–1086

    Article  Google Scholar 

  27. Manabe K, Suetake M, Koyama H, Yang M (2006) Hydroforming process optimization of aluminum alloy tube using intelligent control technique. Int J Mach Tool Manuf 46:1207–1211

    Article  Google Scholar 

  28. Di Lorenzo R, Ingarao G, Chinesta F (2009) A gradient-based decomposition approach to optimize pressure path and counter punch action in Y-shaped tube hydroforming operations. Int J Adv Manuf Technol 44:49–60

    Article  Google Scholar 

  29. Ingarao G, Di Lorenzo R, Micari F (2009) Internal pressure counter punch action design in Y-shaped tube hydroforming processes: a multi-objective optimisation approach. Comput Struct 87:591–602

    Article  Google Scholar 

  30. Imaninejad M, Subhash G, Loukus A (2005) Load path optimization of tube hydroforming process. Int J Mach Tools Manuf 45:1504–1514

    Article  Google Scholar 

  31. Li B, Metzger DR, Nye TJ (2006) Reliability analysis of the tube hydroforming process based on forming limit diagram. Trans ASME 128:402–407

    Google Scholar 

  32. Li B, Nye TJ, Metzger DR (2006) Improving the reliability of the tube-hydroforming process by the Taguchi method. Trans ASME 129:242–247

    Google Scholar 

  33. Li B, Metzger DR, Nye TJ (2004) Reliability analysis of the tube hydroforming process using fuzzy sets theory. Transactions of the ASME 11-17

  34. Abdessalem AB, Pagnacco E, Hami AE (2013) Increasing the stability of T-shape tube hydroforming process under stochastic framework. Int J Adv Manuf Techonol 69:1343–1357

    Article  Google Scholar 

  35. Ben Abdessalem A, El Hami A, Cherouat A (2010) Optimization of the tube hydroforming process using probabilistic constraints on failure modes. In: Proceedings of the tenth ICCST. Civil-Comp, Stirlingshire

  36. Kim J, Kang BS, Lee JK (2009) Statistical evaluation of forming limit in hydroforming process using plastic instability combined with FORM. Int J Adv Manuf Techonol 42:53–59

    Article  Google Scholar 

  37. Kim J, Song WJ, Kang BS (2009) Probabilistic modeling of stress-based FLD in tube hydroforming process. Int J Mech Sci 23:2891–2902

    Google Scholar 

  38. LS-DYNA (2006) Keyword user’s manual, vol 971. Livermore Software Technology Corporation, Livermore

    Google Scholar 

  39. Ray P, Mac Donald BJ (2005) Experimental study and finite element analysis of simple X- and T-branch tube hydroforming processes. Int J Mech Sci 47:1498–1518

    Article  Google Scholar 

  40. Yeniay O, Unal R, Lepsch RA (2006) Using dual response surfaces to reduce variability in launch vehicle design: a case study. Reliab Eng Syst Saf 97:407–412

    Article  Google Scholar 

  41. Jin R, Chen W, Simpson TW (2001) Comparative studies of metamodeling techniques under multiple modeling criteria. Struct Multidisc Optim 23:1–13

    Article  Google Scholar 

  42. Liu GR (2003) Mesh free methods: moving beyond the finite element method. CRC Press, Boca Raton

    MATH  Google Scholar 

  43. Jourdan A, Franco J (2010) Optimal Latin hypercube designs for the Kullback–Leibler criterion. AStA Adv Stat Anal 94:341–351

    Article  MathSciNet  Google Scholar 

  44. Sun G, Li G, Zhou S, Li H, Hou S, Li Q (2011) Crashworthiness design of vehicle by using multiobjective robust optimization. Struct Multidisc Optim 44:99–110

    Article  Google Scholar 

  45. Yuan S, Yuan W, Wang X (2006) Effect of wrinkling behavior on formability and thickness distribution in tube hydroforming. J Mater Process Technol 177:668–671

    Article  Google Scholar 

  46. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197

    Article  Google Scholar 

  47. Chen BL (2002) Optimization theories and algorithms. Tsinghua University Press, Beijing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianlun Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, T., Song, X. & Liu, X. The multi-objective robust optimization of the loading path in the T-shape tube hydroforming based on dual response surface model. Int J Adv Manuf Technol 82, 1595–1605 (2016). https://doi.org/10.1007/s00170-015-7494-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7494-3

Keywords

Navigation