Skip to main content
Log in

CAD-based automatic path generation and optimization for laser cladding robot in additive manufacturing

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Additive manufacturing technology (AMT) is a topic that is of considerable ongoing interest. The application of robots enhances the flexibility and intelligibility of the AMT. However, the traditional robot teaching programming method is tedious and complicated, which is one of the key challenges for developing a robot AMT technique. This paper proposes a new robot programming method based on the computer-aided design (CAD). Firstly, the geometry information of the CAD model is extracted in accordance to the stereo lithography (STL) data format. Secondly, the CAD topological structure is established based on the edge topological information. On the premise of guaranteeing the model precision, the CAD model error is analyzed. The particle swarm optimization (PSO) method is applied to raise the efficiency of the process.Finally, the robot path is automatically generated layer-by-layer from the CAD model and the proposed method is validated by an experiment of cladding a blade. The experiment result shows that the CAD-based automatic path generation and optimization for laser cladding robot is of higher efficiency and better accuracy than the ones with the robot teaching programming method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cerit E, Lazoglu I (2011) A CAM-based path generation method for rapid prototyping applications. Int J Adv Manuf Technol 56:319–327. doi:10.1007/s00170-011-3176-y

    Article  Google Scholar 

  2. Gardan J (2016) Additive manufacturing technologies: state of the art and trends. Int J Prod Res 54:3118–3132. doi:10.1080/00207543.2015.1115909

    Article  Google Scholar 

  3. ISO 172960-1 Standard. Additive manufacturing-general principles-part 1:terminology.

  4. Huang SH, Liu P, Mokasdar A, Hou L (2012) Additive manufacturing and its societal impact: a literature review. Int J Adv Manuf Technol 67:1191–1203. doi:10.1007/s00170-012-558-5

    Article  Google Scholar 

  5. Thomas D (2015) Costs, benefits, and adoption of additive manufacturing: a supply chain perspective. Int J Adv Manuf Technol 85:1857–1876. doi:10.1007/s00170-015-7973-6

    Article  Google Scholar 

  6. Salonitis K, D’Alvise L, Schoinochoritis B, Chantzis D (2015) Additive manufacturing and post-processing simulation: laser cladding followed by high speed machining. Int J Adv Manuf Technol 85:2401–2411. doi:10.1007/s00170-015-7989-y

    Article  Google Scholar 

  7. Guo N, Leu MC (2013) Additive manufacturing: technology, applications and research needs. Front Mech Eng 8:215–243. doi:10.1007/s11465-013-0248-8

    Article  Google Scholar 

  8. Bartlett NW, Tolley MT, Overvelde JT, Weaver JC, Mosadegh B, Bertoldi K, Whitesides GM, Wood RJ (2015) A 3D-printed, functionally graded soft robot powered by combustion. Science 349:161–165. doi:10.1126/science.aab0129

    Article  Google Scholar 

  9. MacDonald E, Wicker R (2016) Multiprocess 3D printing for increasing component functionality. Science 353:1512. doi:10.1126/science.aaf2093

    Article  Google Scholar 

  10. Zak C, Eckel (2016) Additive manufacturing of polymer-derived ceramics. Science 351:58–62. doi:10.1126/Science.aad2688

    Article  Google Scholar 

  11. Bikas H, Stavropoulos P, Chryssolouris G (2016) Additive manufacturing methods and modelling approaches: a critical review. Int J Adv Manuf Technol 83:389–405. doi:10.1007/s00170-015-7576-2

    Article  Google Scholar 

  12. Salonitis K (2016) Design for additive manufacturing based on the axiomatic design method. Int J Adv Manuf Technol 87:989–996. doi:10.1007/s00170-016-8540-5

    Article  Google Scholar 

  13. Killi S, Kempton WL, Morrison A (2015) Design issues and orientations in additive manufacturing. Int J Rapid Manuf 5:289–307. doi:10.1504/ijrapidm.2015.074808

    Article  Google Scholar 

  14. Hayasi MT, Asiabanpour B (2009) Machine path generation using direct slicing from design-by-feature solid model for rapid prototyping. Int J Adv Manuf Technol 45:170–180. doi:10.1007/s00170-009-1944-8

    Article  Google Scholar 

  15. Ding D, Pan Z, Cuiuri D, Li H (2014) A tool-path generation strategy for wire and arc additive manufacturing. Int J Adv Manuf Technol 73:173–183. doi:10.1007/s00170-014-5808-5

    Article  Google Scholar 

  16. Tabernero IE (2013) Modeling of the geometry built-up by coaxial laser material deposition process. Int J Adv Manuf Technol 70:843–851. doi:10.1007/s00170-013-5284-3

    Article  Google Scholar 

  17. Vijayaraghavan V, Garg A, Lam JSL, Panda B, Mahapatra SS (2014) Process characterisation of 3D-printed FDM components using improved evolutionary computational approach. Int J Adv Manuf Technol 78:781–793. doi:10.1007/s00170-014-6679-5

    Article  Google Scholar 

  18. Pi G, Zhang A, Zhu G, Li D, Lu B (2014) Research on the forming process of three-dimensional metal parts fabricated by laser direct metal forming. Int J Adv Manuf Technol 57:841–847. doi:10.1007/s00170-011-3404-5

    Article  Google Scholar 

  19. Zheng HD, Cong M, Liu D, Liu Y, Du Y (2016) Automatic path and trajectory planning for laser cladding robot based on CAD. International conference on mechatronics and automation, Harbin, pp 1338–1343. doi: 10.1109/ICMA.2016.7558757

  20. Chen L, He Y, Yang Y, Niu S, Ren H (2016) The research status and development trend of additive manufacturing technology. Int J Adv Manuf Technol 89:1–10. doi:10.1007/s00170-016-9335-4

    Article  Google Scholar 

  21. Beyer C (2014) Strategic implications of current trends in additive manufacturing. J Manuf Sci Eng 136:064701(1)–064701(8). doi:10.1115/1.4028599

    Article  Google Scholar 

  22. Béchet E (2002) Generation of a finite element MESH from stereolithography (STL) files. ELSEVIER 34:1–17. doi:10.1016/S0010-4485(00)00146-9

    Google Scholar 

  23. Huang WD, Lin X, Chen J (2007) Laser solid forming. Northwestern Polytechnical University Press, Xi’an, pp 57–60

    Google Scholar 

  24. Su XB, Yang YQ, Liu J (2010) Theoretical study on overlapping mechanism in SLM based on interlayer-staggered scan strategy. Appl Mech Mater 44-47:1482–1486. doi:10.4028/www.Scientific.net/AMM.44-47.1482

    Article  Google Scholar 

  25. Kang JW, Huang TY, Zhang AF, Li DC (2011) Numerical simulation of multi-track laser cladding process. Adv Mater Res 399-401:1802–1805. doi:10.4028/www.Scientific.net/AMR.399-401.1802

    Article  Google Scholar 

  26. Yasa E, Kruth JP (2010) Investigation of laser and process parameters for selective laser erosion. Precis Eng 34:101–112. doi:10.1016/j.precisioneng.2009.04.001

    Article  Google Scholar 

  27. Wang C, Zhou LC, Zhou X, He B, Li W (2010) Experimental research on the effects of different overlapping rate in laser shock processing. Proceedings of SPIE-the international society for optical engineering, 7655:765523(1–7). doi: 10.1117/12.866931

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Cong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Cong, M., Dong, H. et al. CAD-based automatic path generation and optimization for laser cladding robot in additive manufacturing. Int J Adv Manuf Technol 92, 3605–3614 (2017). https://doi.org/10.1007/s00170-017-0384-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0384-0

Keywords

Navigation