A numerical approach to the energy efficiency of laser welding

Open Access
ORIGINAL ARTICLE

Abstract

The industrial sector is increasingly concerned with energy consumption, due to the environmental burden and increased cost. An action plan requires the study of energy efficiency in manufacturing processes, especially energy-intensive processes. The energy consumption, during the assembly, plays a significant role on the product’s final energy and eco-evaluation. In this paper, there is a presentation of an in-depth study of the energy efficiency of joining processes. The laser welding process is also discussed in detail, since it has been an increasingly indispensable part of competitive manufacturing throughout the world, and it is a thermal process with relatively low energy efficiency. Important outcomes, regarding the dependence of energy efficiency and weld pool geometry on process parameters, have been derived.

Keywords

Energy efficiency Laser welding Weld pool geometry Joining process Sustainable manufacturing 

References

  1. 1.
    Chryssolouris G (2006) Manufacturing systems: theory and practice, 2nd edn. Springer, New York ISBN:978-0-387-28431-6Google Scholar
  2. 2.
    Li L, Hong M, Schmidt M, Zhong M, Malshe A, Huis in’tVeld B, Kovalenko V (2011) Laser nano-manufacturing—state of the art and challenges. CIRP Ann Manuf Technol 60:735–755CrossRefGoogle Scholar
  3. 3.
    De KJ, Duflou JR, Kruth J-P (2007) Monitoring of high-power CO2 laser cutting by means of an acoustic microphone and photodiodes. Int J Adv Manuf Technol 35:115–126CrossRefGoogle Scholar
  4. 4.
    Ready JF, Farson DF (2001) LIA handbook of laser materials processing. Magnolia Publising, Inc., Laser Institute of AmericaGoogle Scholar
  5. 5.
    Tönshoff HK, Egger R, Klocke F (1996) Environmental and safety aspects of electrophysical and electrochemical processes. CIRP Ann Manuf Technol 45(2):553–568CrossRefGoogle Scholar
  6. 6.
    Wang P, Chen X, Pan Q, Madigan B, Long J (2016) Laser welding dissimilar materials of aluminum to steel: an overview. Int J Adv Manuf Technol. doi:10.1007/s00170-016-8725-y Google Scholar
  7. 7.
    Zhang L, Zhang G, Bai X, Ning J (2016) Effect of the process parameters on the three-dimensional shape of molten pool during full-penetration laser welding process. Int J Adv Manuf Technol 86:1273. doi:10.1007/s00170-015-8249-x CrossRefGoogle Scholar
  8. 8.
    Tsoukantas G, Stournaras A, Chryssolouris G (2008) Experimental investigation of remote welding with CO2 and Nd: YAG laser-based systems. J Laser Appl 20:50–58CrossRefGoogle Scholar
  9. 9.
    Tsoukantas G, Salonitis K, Stournaras A, Stavropoulos P, Chryssolouris G (2007) On optical design limitations of generalized two-mirror remote beam delivery laser systems: the case of remote welding. Int J Adv Manuf Technol 32:932. doi:10.1007/s00170-005-0400-7 CrossRefGoogle Scholar
  10. 10.
    Zaeh MF, Moesl J, Musiol J, Oefele F (2010) Material processing with remote technology-revolution or evolution? Phys Procedia 5:19–33. doi:10.1016/j.phpro.2010.08.119 CrossRefGoogle Scholar
  11. 11.
    Verhaeghe G (2012) Remote laser welding for automotive seat production. Ind Laser Solut 27:6–11Google Scholar
  12. 12.
    Papakostas N, Mavrikios D, Chryssolouris G (2008) A perspective on manufacturing strategy: produce more with less. CIRP J Manuf Sci Technol 1(1):45–52CrossRefGoogle Scholar
  13. 13.
    IEA (2007) Tracking industrial energy efficiency and CO2 emissions. France. pp 321Google Scholar
  14. 14.
    Fysikopoulos A, Papacharalampopoulos A, Pastras G, Stavropoulos P, Chryssolouris G (2013) Energy efficiency of manufacturing processes: a critical review, Procedia CIRP. 46th CIRP Conference on Manufacturing Systems – CMS 2013. Sesimbra. Portugal Procedia CIRP 7:628–633CrossRefGoogle Scholar
  15. 15.
    Allen D, Bauer D, Bras B, Gutowski T, Murphy C, Piwonka T et al (2002) Environmentally benign manufacturing: trends in Europe, Japan, and the USA. J Manuf Sci Eng 124(4):908–920CrossRefGoogle Scholar
  16. 16.
    Fysikopoulos A, Stavropoulos P, Salonitis K, Chryssolouris G (2012) Energy efficiency assessment of laser drilling process, (LANE 2012) Laser Assisted Net shape Engineering 7. Phys Procedia 39:776–783. doi:10.1016/j.cirp.2011.03.009 CrossRefGoogle Scholar
  17. 17.
    Gutowski T, Murphy C, Allen D, Bauer D, Bras B, Piwonka T, Sheng P, Sutherland J, Thurston D, Wolff E (2005) Environmentally benign manufacturing: observations from Japan, Europe and the United States. J Clean Prod 13(1):1–17CrossRefGoogle Scholar
  18. 18.
    Fysikopoulos A, Pastras G, Alexopoulos T, Chryssolouris G (2014) On a generalized approach to manufacturing energy efficiency. Int J Adv Manuf Technol 73:1437–1452. doi:10.1007/s00170-014-5818-3 CrossRefGoogle Scholar
  19. 19.
    Duflou JR, Sutherland JW, Dornfeld D, Herrmann C, Jeswiet J, Kara S, Hauschild M, Kellens K (2012) Towards energy and resource efficient manufacturing: a processes and systems approach. CIRP Ann Manuf Technol 61:587–609CrossRefGoogle Scholar
  20. 20.
    Pastras G, Fysikopoulos A, Stavropoulos P, Chryssolouris G (2014a) An approach to modelling evaporation pulsed laser drilling and its energy efficiency. Int J Adv Manuf Technol 72:1227. doi:10.1007/s00170-014-5668-z CrossRefGoogle Scholar
  21. 21.
    Draganescu F, Gheorghe M, Doicin CV (2003) Models of machine tool efficiency and specific consumed energy. J Mater Process Technol 141:9–15CrossRefGoogle Scholar
  22. 22.
    Fysikopoulos A, Salonitis K, Chryssolouris G (2009) Energy efficiency of laser based manufacturing processes. Proceedings of 28th international congress on applications of lasers and electro-optics. Orlando. USA. pp 1525–1531Google Scholar
  23. 23.
    Khan MMA, Romoli L, Dini G, Fiaschi M (2011) A simplified energy based model for laser welding of ferritic stainless steels in overlap configuration. CIRP Ann Manuf Technol 60:215–218CrossRefGoogle Scholar
  24. 24.
    Lampa C, Kaplan AFH, Powell J, Magnusson C (1997) An analytical thermodynamic model of laser welding. J Phys D Appl Phys 30:1293–1299CrossRefGoogle Scholar
  25. 25.
    Ki H, Mohanty PS, Mazumder J (2002) Modeling of laser keyhole welding: part II. Simulation of keyhole evolution, velocity, temperature profile and experimental verification. Metall Mater Trans A 33:1831–1842CrossRefGoogle Scholar
  26. 26.
    Shanmugam NS, Buvanashekaran G, Sankaranarayanasamy K (2013) Some studies on temperature distribution modeling of laser butt welding of AISI 304 stainless steel sheets. World Acad Sci Eng Technol 7:1088–1097Google Scholar
  27. 27.
    Salonitis K, Stavropoulos P, Fysikopoulos A, Chryssolouris G (2013) CO2 laser butt-welding of steel sandwich sheet composites. Int J Adv Manuf Technol 69:245. doi:10.1007/s00170-013-5025-7 CrossRefGoogle Scholar
  28. 28.
    Pastras G, Fysikopoulos A, Giannoulis C, Chryssolouris G (2014b) A numerical approach to modelling keyhole laser welding. Int J Adv Manuf Technol. doi:10.1007/s00170-013-5025-7 Google Scholar
  29. 29.
    Budynas R G, Nisbett J K (2011) Shigley’s mechanical engineering design. 9th ed., McGraw-Hill series in mechanical engineering. ISBN:978–0–07-352928-8Google Scholar
  30. 30.
    Lazzarin P, Berto F, Radaj D (2009) Fatigue-relevant stress field parameters of welded lap joints: pointed slit tip compared with keyhole notch. Fatigue Fract Eng Mater Struct 32:713–735CrossRefGoogle Scholar
  31. 31.
    Radaj D, Vormwald M (2013) Advanced methods of fatigue assessment. SpringerGoogle Scholar
  32. 32.
    Zhang S (2002) Stresses in laser-beam-welded lap joints determined by outer surface strains. Weld J:14–18Google Scholar

Copyright information

© The Author(s) 2017

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • G. Pastras
    • 1
    • 2
  • A. Fysikopoulos
    • 1
    • 3
  • G. Chryssolouris
    • 1
  1. 1.Laboratory for Manufacturing Systems and Automation, Department of Mechanical Engineering and AeronauticsUniversity of PatrasPatrasGreece
  2. 2.Department of Physics, School of Applied Mathematics and Physical SciencesAthensGreece
  3. 3.Automation Systems - Materials & Process TechnologiesCOMAU SpAGrugliascoItaly

Personalised recommendations