Skip to main content
Log in

CO2 laser butt-welding of steel sandwich sheet composites

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Steel sandwich sheets compared with conventional steel exhibit significant performance improvements such as lower density, higher specific flexural stiffness, and better sound and vibration damping characteristics. However, the main challenge for the broad industrial use is that the joining and assembling methods be used in such a way so as not to alter significantly these characteristics. In the present paper, a laser welding of steel sandwich is examined. The feasibility study of the laser butt-welding of sandwich steel sheets with a CO2 laser beam has revealed that such an approach is possible. A theoretical model of the laser welding process is developed for the investigation of the laser beam impact on both the core and the outer steel layers of the sandwich material. The model presented is based on a novel idea for the simulation of the heat source through the finite element analysis for the estimation of the temperature distribution. Additionally, the effect on the quality of the weld, the strength of the welded sheet, and its damping characteristics are also experimentally investigated and prove that laser welding can be considered as an alternative joining process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Salonitis K, Drougkas D, Chryssolouris G (2010) Finite element modeling of penetration laser welding of sandwich materials. Phys Procedia 5:327–335. doi:10.1016/j.phpro.2010.08.059

    Article  Google Scholar 

  2. Gower HL, Pieters RRGM, Richardson IM (2006) Pulsed laser welding of metal-polymer sandwich materials using pulse shaping. J Laser Appl 18:35–41. doi:10.2351/1.2080307

    Article  Google Scholar 

  3. Berretta JR, de Rossi W, das Neves MDM, de Almeida IA, Vieira ND Jr (2007) Pulsed Nd:YAG laser welding of AISI 304 to AISI 420 stainless steels. Opt Lasers Eng 45:960–966

    Article  Google Scholar 

  4. Mousavi SAA, Akbari, Sufizadeh AR (2009) Metallurgical investigations of pulsed Nd:YAG laser welding of AISI 321 and AISI 630 stainless steels. Mater Des 30:3150–3157

    Article  Google Scholar 

  5. Anawa EM, Olabi AG (2008) Using Taguchi method to optimize welding pool of dissimilar laser-welded components. Opt Laser Technol 40:379–388

    Article  Google Scholar 

  6. Mai TA, Spowage AC (2004) Characterization of dissimilar joints in laser welding of steel–kovar, copper–steel and copper–aluminium. Mater Sci Eng, A 374:224–233

    Article  Google Scholar 

  7. Naffakh H, Shamanian M, Ashrafizadeh F (2009) Dissimilar welding of AISI 310 austenitic stainless steel to nickel-based alloy Inconel 657. J Mater Process Technol 209:3628–3639

    Article  Google Scholar 

  8. Liu X-B, Yu G, Pang M, Fan J-W, Wang H-H, Zheng C-Y (2007) Dissimilar autogenous full penetration welding of superalloy K418 and 42CrMo steel by a high power CW Nd:YAG laser. Appl Surf Sci 253:7281–7289

    Article  Google Scholar 

  9. Pandremenos J, Salonits K, Chryssolouris G (2009), «CO2 Laser Welding of AHSS», Proceedings of the ICALEO 2009—28th International Congress on Applications of Lasers and Electro-optics, 2–5 November, Orlando, FL, USA, (Paper P122), pp. 1507–1514, ISBN: 978-0-912035-59-8

  10. Salonitis K, Stournaras A, Tsoukantas G, Stavropoulos P, Chryssolouris G (2007) A theoretical and experimental investigation on limitations of pulsed laser drilling. J Mater Process Technol 183:96–103. doi:10.1016/j.jmatprotec.2006.09.031

    Article  Google Scholar 

  11. Stournaras A, Stavropoulos P, Salonitis K, Chryssolouris G (2009) An investigation of quality in CO2 laser cutting of aluminum. CIRP J Manuf Sci Technol 2:61–69. doi:10.1016/j.cirpj.2009.08.005

    Article  Google Scholar 

  12. Stournaras A, Salonitis K, Stavropoulos P, Chyssolouris G (2009) Theoretical and experimental investigation of pulsed laser grooving process. Int J Adv Manuf Technol 44:114–124. doi:10.1007/s00170-008-1818-5

    Article  Google Scholar 

  13. Park H, Rhee S (1999) Analysis of mechanism of plasma and spatter in CO2 laser welding of galvanized steel. Opt Laser Technol 31:119–126

    Article  Google Scholar 

  14. Chryssolouris G (1991) Laser machining: theory and practice. Springer, New York

    Book  Google Scholar 

  15. Tsoukantas G, Salonitis K, Stournaras A, Stavropoulos P, Chryssolouris G (2007) On optimal design limitations of generalized two-mirror remote beam delivery laser systems: the case of remote welding. Int J Adv Manuf Technol 32:932–941

    Article  Google Scholar 

  16. Lankalapalli KN, Tu JF, Gartner M (1996) A model for estimating penetration depth of laser welding processes. Phys D: Appl Phys 29:1831–1841

    Article  Google Scholar 

  17. Lampa C, Kaplan AFH, Powell J, Magnusson C (1997) An analytical thermodynamic model of laser welding. Phys D: Appl Phys 30:1293–1299

    Article  Google Scholar 

  18. Tsoukantas G, Chryssolouris G (2006) Theoretical and experimental analysis of the remote welding process on thin lap-joined AISI 304 sheets. Int J Adv Manuf Technol 35:880–894

    Article  Google Scholar 

  19. Moraitis GA, Labeas GN (2008) Residual stress and distortion calculation of laser beam welding for aluminum lap joints. J Mater Process Tech 198:260–269

    Article  Google Scholar 

  20. Solana P, Ocana JL (1997) A mathematical model for penetration laser welding as a free-boundary problem. J Phys D: Appl Phys 30:1300–1313

    Article  Google Scholar 

  21. Mazumder J, Steen WM (1980) Heat transfer model for cw laser material processing. J Appl Phys 51:941–947

    Article  Google Scholar 

  22. Goldak J, Chakravarti A, Bibby M (1984) A new finite element model for welding heat sources. Metall Trans B 15B:299–305

    Article  Google Scholar 

  23. Frewin MR, Scott DA (1999) Finite element model of pulsed laser welding. Welding Research Supplement 5s–22s

  24. Maiti SK, De A, Walsh CA, Bhadeshia HKDH (2003) Finite element simulation of laser spot welding. Sci Technol Weld Join 8:377–383

    Article  Google Scholar 

  25. Siva SN, Buvanashekaran G, Sankaranarayanasamy K (2012) Some studies on weld bead geometries for laser spot welding process using finite element analysis. Mater Des 34:412–426

    Article  Google Scholar 

  26. Abderrazak K, Salem WB, Mhiri H, Lepalec G, Autric M (2008) Modelling of CO2 laser welding of magnesium alloys. Opt Laser Technol 40:581–588

    Article  Google Scholar 

  27. Borrisutthekul R, Miyashita Y, Mutoh Y (2005) Dissimilar material laser welding between magnesium alloy AZ31B and aluminium alloy A5052-O. Sci Technol Adv Mater 6:199–204

    Article  Google Scholar 

  28. Siva Shanmugam N, Buvanashekaran G, Sankaranarayanasamy K, Manonmani K (2009) Some studies on temperature profiles in AISI 304 stainless steel sheet during laser beam welding using FE simulation. Int J Adv Manuf Technol 43:78–94

    Article  Google Scholar 

  29. Martinson P, Daneshpour S, Kocak M, Riekehr S, Staron P (2009) Residual stress analysis of laser spot welding of steel sheets. Mater Des 30:3351–3359

    Article  Google Scholar 

  30. Tavares SM, Terra VF, Pardal JM, Fonseca MP (2005) Influence of the microstructure on the toughness of a duplex stainless steel UNS S31803. J Mater Sci 40:145–154

    Article  Google Scholar 

  31. Jana S (1992) Effect of heat input on HAZ properties of two duplex stainless steels. J Mater Process Technol 33:247–261. doi:10.1016/0924-0136(92)90211-A

    Article  Google Scholar 

  32. Bala SP, Muthupandi V, Dietzel W, Sivan V (2006) Microstructure and corrosion behavior of shielded metal arc welded dissimilar joints comprising duplex stainless steel and low alloy steel. Mater Eng Perform 15:758. doi:10.1361/105994906X150902

    Article  Google Scholar 

  33. Çam G, Erim S, Yeni Ç, Koçak M (1999) Determination of mechanical and fracture properties of laser beam welded steel joints. Weld Res, Weld Res Suppl 1999:193–201

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Chryssolouris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salonitis, K., Stavropoulos, P., Fysikopoulos, A. et al. CO2 laser butt-welding of steel sandwich sheet composites. Int J Adv Manuf Technol 69, 245–256 (2013). https://doi.org/10.1007/s00170-013-5025-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-5025-7

Keywords

Navigation