Skip to main content
Log in

Effect of RE2O3 (RE = La, Ce) fluxes on A-TIG welding of Ti6Al4V

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The effect of RE2O3 (RE = La, Ce) fluxes on penetration and microstructure in 3-mm-thick Ti6Al4V weld joints made by activated flux tungsten inert gas (A-TIG) welding process was investigated. The mechanism of penetration increase was discussed. Microstructure characterization in the fusion zone region was also observed under optical microscope. It is shown that RE2O3 fluxes can effectively increase weld penetration of Ti6Al4V for applying a thin layer paste when welding. The mechanism would comply with changing the Marangoni convection in the weld pool, rather than the arc. A-TIG welding with RE2O3 fluxes can slightly refine the width of β-Ti grains. Phase constitution shows single α′-Ti in solidification structure in both two welding process. There are no significant changes in weld metal microstructure with and without Re2O3 fluxes. Microhardness distribution of weld seam indicates that the appearance of RE2O3 has not affected the metal plastic deformation capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dey HC, Albert SK, Bhaduri AK, Mudali UK (2013) Activated flux TIG welding of titanium. Int J Adv Manuf Technol 57(6):903–912. doi:10.1007/s40194-013-0084-9

    Google Scholar 

  2. Arunkumar V, Vasudevan M, Maduraimuthu V, Muthupandi V (2012) Effect of activated flux on the microstructure and mechanical properties of 9Cr-1Mo steel weld joint. Mater Manuf Process 27(11):1171–1177. doi:10.1080/10426914.2011.610212

    Article  Google Scholar 

  3. Tseng KH (2013) Development and application of oxide-based flux powder for tungsten inert gas welding of austenitic stainless steels. Powder Technol 233:72–79. doi:10.1016/j.powtec.2012.08.038

    Article  Google Scholar 

  4. Korra NN, Vasudevan M, Balasubramanian KR (2015) Multi-objective optimization of activated tungsten inert gas welding of duplex stainless steel using response surface methodology. Int J Adv Manuf Technol 77(1–4):67–81. doi:10.1007/s00170-014-6426-y

    Article  Google Scholar 

  5. Lin HL (2013) Optimization of Inconel 718 alloy welds in an activated GTA welding via Taguchi method, gray relational analysis, and a neural network. Int J Adv Manuf Technol 67(1–4):939–950. doi:10.1007/s00170-012-4538-9

    Article  Google Scholar 

  6. Modenesi PJ, Apolinario ER, Pereira IM (2000) TIG welding with single-component fluxes. J Mater Process Tech 99(1–3):260–265. doi:10.1016/S0924-0136(99)00435-5

    Article  Google Scholar 

  7. Wang SJ, Zhao LZ, Wang ML, Xu D (2012) Effects of activating fluxes on pulsed laser beam welded AZ31 magnesium alloy. Sci Technol Weld Joi 17(8):665–671. doi:10.1179/1362171812Y.0000000060

    Article  Google Scholar 

  8. Lin HL, Wu TM (2012) Effects of activating flux on weld bead geometry of Inconel 718 alloy TIG welds. Mater Manuf Process 27(12):1457–1461. doi:10.1080/10426914.2012.677914

    Article  Google Scholar 

  9. Maduraimuthu V, Vasudevan M, Muthupandi V, Bhaduri AK, Jayakumar T (2012) Effect of activated flux on the microstructure, mechanical properties, and residual stresses of modified 9Cr-1Mo steel weld joints. Metall Mater Trans B Process Metall Mater Process Sci 43(1):123–132. doi:10.1007/s11663-011-9568-4

    Article  Google Scholar 

  10. Surinder T, Anirban B, Kumar BT (2015) Influence of current and shielding gas in TiO2 flux activated TIG welding on different graded steels. Mater Manuf Process 30(9):1115–1123. doi:10.1080/10426914.2014.973591

    Article  Google Scholar 

  11. Surinder T, Anirban B (2016) Activated-TIG welding of different steels: influence of various flux and shielding gas. Mater Manuf Process 31(3):335–342. doi:10.1080/10426914.2015.1037914

    Article  Google Scholar 

  12. Tanaka M, Shimizu T, Terasaki H, Ushio M, Koshiishi F, Yang CL (2000) Effects of activating flux on arc phenomena in gas tungsten arc welding. Sci Technol Weld Joi 5(6):397–402. doi:10.1179/136217100101538461

    Article  Google Scholar 

  13. Howse DS, Lucas W (2000) Investigation into arc constriction by active fluxes for tungsten inert gas welding. Technol Weld Joi 5(3):189–193. doi:10.1179/136217100101538191

    Article  Google Scholar 

  14. Lu SP, Fujii H, Sugiyama H, Tanaka M, Nogi K (2002) Weld penetration and Marangoni convection with oxide fluxes in GTA welding. Mater Trans 43(11):2926–2931. doi:10.2320/matertrans.43.2926

    Article  Google Scholar 

  15. Xu YL, Dong ZB, Wei YH, Yang CL (2007) Marangoni convection and weld shape variation in A-TIG welding process. Theor Appl Fract Mec 48(2):178–186. doi:10.1016/j.tafmec.2007.05.004

    Article  Google Scholar 

  16. Leconte S, Paillard P, Saindrenan J (2006) Effect of fluxes containing oxides on tungsten inert gas welding process. Sci Technol Weld Joi 11(1):43–47. doi:10.1179/174329306X77047

    Article  Google Scholar 

  17. Leconte S, Paillard P, Chapelle P, Henrion G, Saindrenan J (2006) Effect of oxide fluxes on activation mechanisms of tungsten inert gas process. Sci Technol Weld Joi 11(4):389–397. doi:10.1179/174329306X129544

    Article  Google Scholar 

  18. Mishra S, Lienert TJ, Johnson MQ, DebRoy T (2008) An experimental and theoretical study of gas tungsten arc welding of stainless steel plates with different sulfur concentrations. Acta Materlalia 56(9):2133–2146. doi:10.1016/j.actamat.2008.01.028

    Article  Google Scholar 

  19. Prilutsky VP, Akhonin SV (2014) TIG welding of titanium alloys using fluxes. Weld World 58(2):245–251. doi:10.1007/s40194-013-0096-5

    Article  Google Scholar 

  20. Zhang D, Luo Z, Yuan T, Wang R (2011) Effects of rare earth elements erbium and cerium on the properties of hardfacing Alloy. Adv Mater Res 189-193:3488-3491. doi:10.4028/www.scientific.net/AMR.189-193.3488

  21. Lu SP, Fujii H, Sugiyama H, Sugiyama H, Tanaka M, Nogi K (2002) Weld penetration and Marangoni convection with oxide fluxes in GTA welding. Mater Trans 43(11):2926–2931. doi:10.2320/matertrans.43.2926

    Article  Google Scholar 

  22. Zhao YZ, Zhou HP, Shi YW (2006) The study of surface active element on weld pool development in A-TIG welding. Model Simul Mater Sc 14(3):331–349. doi:10.1088/0965-0393/14/3/001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhui Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Dong, J. & Han, X. Effect of RE2O3 (RE = La, Ce) fluxes on A-TIG welding of Ti6Al4V. Int J Adv Manuf Technol 91, 1181–1188 (2017). https://doi.org/10.1007/s00170-016-9826-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9826-3

Keywords

Navigation