Skip to main content
Log in

Potential of alternative lubrication strategies for metal cutting processes: a review

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In the last many decades, the usage of cutting fluid is a common technique for improving the machinability of metals. The application of cutting fluid during the machining phase significantly influences the environmental burden of the process. The disposal of these cutting fluids imposes threat to the environment due to their high noxiousness and non-biodegradable. Several researchers in the metal cutting sector have focused their work to improve the economic and ecological conditions of the machining process by reducing the consumption of the cutting fluids. There is a need to explore different green and innovative techniques to facilitate cooling and lubrication during the machining phase. The conventional cutting fluids not only have environmental and health restrictions, but also they are costly due to the strict regulations for disposal. In this paper, sustainable nature of different cutting fluids has been investigated. The paper also provides a detailed review of the cooling strategies with respect to their environmental impact on human’s health and developments in eradicating the usage of conventional cutting fluids has also been reviewed. Furthermore, different environment friendly cooling strategies, mainly minimum quantity of lubrication (MQL), and cryogenic arrangement have been reviewed in the literature, and it is found that there is a giant scope of further research work to optimize these cooling strategies in order to make them functionally applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shokrani A, Dhokia V, Newman ST (2012) Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids. Int J Mach Tools Manuf 57:83–101

    Article  Google Scholar 

  2. Leskover P, Grum J (1986) The metallurgical aspect of machining. Ann CIRP 35(2):537–550

    Article  Google Scholar 

  3. Tonshoff HK, Brinksmeier E (1986) Determination of the mechanical and thermal influences on machined surface by microhardness and residual stress analysis. Ann CIRP 29(2):519–532

    Article  Google Scholar 

  4. Dhar NR, Kamruzzaman M, Ahmed M (2006) Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel. J Mater Process Technol 172(2):299–304

    Article  Google Scholar 

  5. Pervaiz S, Deiab I, Darras B (2013) Power consumption and tool wear assessment when machining titanium alloy. Int J Precis Eng and Manufacturing 14(6):925–936

    Article  Google Scholar 

  6. Adler DP, Hii WW-S, Michalek DJ, Sutherland JW (2006) Examining the role of cutting fluids in machining and efforts to address associated environmental/health concerns. Mach Sci Technol 10(1):23–58

    Article  Google Scholar 

  7. Carter, W. A., 1956, Metal Machining, Part VI, Cutting Fluids, Machinery Lloyd, Overseas Edition

  8. Seah KHW, Li X, Lee KS (1995) The effect of applying coolant on tool wear in metal machining. J Mater Process Tech 48(1–4):495–501

    Article  Google Scholar 

  9. Lee WY, Kim KW, Sin HC (2002) Cutting conditions for finish turning process aiming: the use of dry cutting. Int J Mach Tools Manuf 42(8):899–904

    Article  Google Scholar 

  10. Simon, H., Thoma, M., and Maier, K., 1979, “Coolants with chlorine extreme pressure additives,”,” WT Z. Ind. Furtgung 69 [German], pp. 79–82

  11. El Baradie MA (1996) Cutting fluids: part II. Recycling and clean machining. J Mater Process Technol 56(1–4):798–806

    Article  Google Scholar 

  12. Cantero JL, Tardio MM, Canteli JA, Marcos M, Miguelez MH (2005) Dry drilling of alloy Ti-6Al-4 V. Int J Mach Tools Manuf 45(11):1246–1255

    Article  Google Scholar 

  13. Klocke F, Krieg T (1999) Coated tools for metal cutting—features and applications. CIRP Ann. - Manuf. Technol. 48(2):515–525

    Article  Google Scholar 

  14. 2004, “Cutting Fluid Health Hazards, (Retrieved 01/02/2016); /http://www.mfg.mtu.edu/cyberman/index.html

  15. Byrne G, Scholta E (1993) Environmentally clean machining processes—a strategic approach. Ann CIRP 42(1):471–474

    Article  Google Scholar 

  16. Pusavec F, Krajnik P, Kopac J (2010) Transitioning to sustainable production—part I: application on machining technologies. J Clean Prod 18(2):174–184

    Article  Google Scholar 

  17. Sreejith PS, Ngoi BKA (2000) Dry machining: machining of the future. J Mater Process Technol 101(1):287–291

    Article  Google Scholar 

  18. Kelly JF, Cotterell MG (2002) Minimal lubrication machining of aluminium alloys. J Mater Process Technol 120(1–3):327–334

    Article  Google Scholar 

  19. Lugscheider E, Knotek O, Barimani C, Leyendecker T, Lemmer O, Wenke R (1997) Investigations on hard coated reamers in different lubricant free cutting operations. Surf. Coatings Technol. 90(1–2):172–177

    Article  Google Scholar 

  20. Dhar NR, Islam MW, Islam S, Mithu MAH (2006) The influence of minimum quantity of lubrication (MQL) on cutting temperature, chip and dimensional accuracy in turning AISI-1040 steel. J Mater Process Technol 171(1):93–99

    Article  Google Scholar 

  21. Rahman M, Senthil Kumar A, Salam MU (2002) Experimental evaluation on the effect of minimal quantities of lubricant in milling. Int J Mach Tools Manuf 42(5):539–547

    Article  Google Scholar 

  22. Tasdelen B, Wikblom T, Ekered S (2008) Studies on minimum quantity lubrication (MQL) and air cooling at drilling. J Mater Process Technol 200(1–3):339–346

    Article  Google Scholar 

  23. Raza SW, Pervaiz S, Deiab I (2014) Tool wear patterns when turning of titanium alloy using sustainable lubrication strategies. Int J Precis Eng Manuf 15(9):1979–1985

    Article  Google Scholar 

  24. Pervaiz, S., Deiab, I., Rashid, A., Nicolescu, M., and Kishawy, H., 2013, “Performance Evaluation of Different Cooling Strategies when Machining Ti6Al4V,” International Conference on Advanced Manufacturing Engineering and Technologies, Newtech 2013, , Stockholm, Sweden

  25. Davim JP, Sreejith PS, Gomes R, Peixoto C (2006) Experimental studies on drilling of aluminium (AA1050) under dry, minimum quantity of lubricant, and flood-lubricated conditions. Proc Inst Mech Eng Part B Journal Engineering Manu-facture 220:1605–1611

    Article  Google Scholar 

  26. Rahim EA, Sasahara H (2011) A study of the effect of palm oil as MQL lubricant on high speed drilling of titanium alloys. Tribol Int 44(3):309–317

    Article  Google Scholar 

  27. Zeilmann RP, Weingaertner WL (2006) Analysis of temperature during drilling of Ti6Al4V with minimal quantity of lubricant. J Mater Process Technol 179(1–3):124–127

    Article  Google Scholar 

  28. Wang ZG, Rahman M, Wong YS, Neo KS, Sun J, Tan CH, Onozuka H (2009) Study on orthogonal turning of titanium alloys with different coolant supply strategies. Int J Adv Manuf Technol 42(7–8):621–632

    Article  Google Scholar 

  29. Cai XJ, Liu ZQ, Chen M, An QL (2012) An experimental investigation on effects of minimum quantity lubrication oil supply rate in high-speed end milling of Ti-6Al-4 V. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 226(11):1784–1792

    Article  Google Scholar 

  30. Klocke F, Sangermann H, Kramer A, Lung D (2011) Influence of a high pressure Lubri-coolant supply on thermo-mechanical tool load and tool wear behaviour in the turning of aerospace materials. Proc Inst Mech Engineers, Part B J Eng Manuf 225:52

    Article  Google Scholar 

  31. Yasir MSA, Hassan CCH, Jaharah AG, Nagi HE, Yanuar B, Ghusri AI (2009) Machinability of Ti6Al4V under dry and near dry condition using carbide tools. The Open Industrial Manuf Eng J 2:1–9

    Article  Google Scholar 

  32. Jianxin D, Wenlong S, Hui Z (2009) Design, fabrication and properties of a self-lubricated tool in dry cutting. Int J Mach Tools Manuf 49(1):66–72

    Article  Google Scholar 

  33. Xu J, Zhu MH, Zhou ZR (2004) Fretting wear behavior of PTFE-based bonded solid lubrication coatings. Thin Solid Films 457(2):320–325

    Article  Google Scholar 

  34. Vamsi Krishna P, Nageswara Rao D (2008) Performance evaluation of solid lubricants in terms of machining parameters in turning. Int J Mach Tools Manuf 48(10):1131–1137

    Article  Google Scholar 

  35. Xu J, Zhou ZR, Zhang CH, Zhu MH, Luo JB (2007) An investigation of fretting wear behaviors of bonded solid lubricant coatings. J Mater Process Technol 182(1–3):146–151

    Article  Google Scholar 

  36. Suresh Kumar Reddy N, Venkateswara Rao P (2006) Experimental investigation to study the effect of solid lubricants on cutting forces and surface quality in end milling. Int J Mach Tools Manuf 46(2):189–198

    Article  Google Scholar 

  37. Shen B, Malshe AP, Kalita P, Shih AJ (2008) Performance of novel MoS2 nanoparticles based grinding fluids in minimum quantity lubrication grinding. Trans NAMRI/SME 36:357–364

    Google Scholar 

  38. Park K-H, Ewald B, Kwon PY (2011) Effect of Nano-enhanced lubricant in minimum quantity lubrication balling milling. J Tribol 133(3):031803

    Article  Google Scholar 

  39. Su Y, He N, Li L, Li XL (2006) An experimental investigation of effects of cooling/lubrication conditions on tool wear in high-speed end milling of Ti-6Al-4 V. Wear 261(7–8):760–766

    Article  Google Scholar 

  40. Yildiz Y, Nalbant M (2008) A review of cryogenic cooling in machining processes. Int J Mach Tools Manuf 48(9):947–964

    Article  Google Scholar 

  41. Sun S, Brandt M, Dargusch MS (2010) Machining Ti–6Al–4 V alloy with cryogenic compressed air cooling. Int J Mach Tools Manuf 50(11):933–942

    Article  Google Scholar 

  42. Bermingham MJ, Kirsch J, Sun S, Palanisamy S, Dargusch MS (2011) New observations on tool life, cutting forces and chip morphology in cryogenic machining Ti-6Al-4 V. Int J Mach Tools Manuf 51(6):500–511

    Article  Google Scholar 

  43. Sharma VS, Dogra M, Suri NM (2009) Cooling techniques for improved productivity in turning. Int J Mach Tools Manuf 49(6):435–453

    Article  Google Scholar 

  44. Hong SY, Ding Y (2001) Cooling approaches and cutting temperatures in cryogenic machining of Ti-6Al-4V. Int J Mach Tools Manuf 41(10):1417–1437

    Article  Google Scholar 

  45. Silva MB, Wallbank J (1999) Cutting temperature: prediction and measurement methods-a review. J Mater Processing Technol 88:195–202

    Article  Google Scholar 

  46. Abukhshim NA, Mativenga PT, Sheikh MA (2006) Heat generation and temperature prediction in metal cutting: a re-view and implications for high speed machining. International J Mach Tools Manufacture 46:782–800

    Article  Google Scholar 

  47. Majumdar P, Jayaramachandran R, Ganesan S (2005) Finite element analysis of temperature rise in metal cutting processes. Appl Therm Eng 25(14–15):2152–2168

    Article  Google Scholar 

  48. Ng E-G, Aspinwall DK, Brazil D, Monaghan J (1999) Modelling of temperature and forces when orthogonally machining hardened steel. Int J Mach Tools Manuf 39:885–903

    Article  Google Scholar 

  49. Groover MP, Kane GE (1971) A continuing study in the determination of temperatures in metals cutting using remote thermocouples. Trans ASME, J of Engineering Ind 93(2):603–608

    Article  Google Scholar 

  50. Hong SY, Broomer M (2000) Economical and ecological cryogenic machining of AISI 304 austenitic stainless steel. Clean Techn Environ Policy 2:157–166

    Google Scholar 

  51. O’Sullivan D, Cotterell M (2001) Temperature measurement in single point turning. J Mater Process Technol 118:301–308

    Article  Google Scholar 

  52. Kitagawa T, Kubo A, Maekawa K (1997) Temperature and wear of cutting tools in high-speed machining of Incone1718 and Ti-6 A1-6 V-2Sn. Wear 202(2):142–148

    Article  Google Scholar 

  53. Chen WC, Tsao CC, Liang PW (1995) Determination of temperature distributions on the rake face of cutting tools using a remote method. Int Comm Heat Mass Transf 22(6):779–790

    Article  Google Scholar 

  54. Komanduri R, Hou ZB (2001) Thermal modelling of the metal cutting process—part III: temperature rise distribution due to the combined effects of shear plane heat source and the tool–chip interface frictional heat source. Int Journal Mech Sci 43:89–107

    Article  MATH  Google Scholar 

  55. Ay H, Yang W-J (1998) Heat transfer and life of metal cutting tools in turning. Int J Heat Mass Transf 41(3):613–623

    Article  Google Scholar 

  56. Chou YK, Evans CJ (1997) Tool wear mechanism in continuous cutting of hardened tool steels. Wear 212:59–65

    Article  Google Scholar 

  57. Groover, M. P., 1996, Fundamentals of modern manufacturing, materials, processes, and systems, Prentice-Hall Inc., Upper Saddle River, NJ , 569

  58. Minton T, Ghani S, Sammler F, Bateman B, Fürstmann P, Roeder M (2013) Temperature of internally-cooled diamond-coated tools for dry-cutting titanium. Int Journal of Mach Tools Manuf 75:27–35

    Article  Google Scholar 

  59. Liu, Z. Q., Ai, X., Zhang, H., Wang, Z. T., and Wan, Y., 2002, “Wear patterns and mechanisms of cutting tools in high-speed face milling,” Journal of Materials Processing Technology, 222–226

  60. Casto SL, Valvo EL, Lucchini E, Maschio S, Russi VF (1997) Wear rates and wear mechanisms of alumina-based tools cutting steel at a low cutting speed. Wear 208:67–72

    Article  Google Scholar 

  61. Liao YS, Lin HM, Wang JH (2008) Behaviors of end milling Inconel 718 superalloy by cemented carbide tools. J Mater Process Technol 201(1–3):460–465

    Article  Google Scholar 

  62. Pittala GM, Monno M (2011) A new approach to the prediction of temperature of the workpiece of face milling operations of Ti-6Al-4 V. Appl Therm Eng 31(2–3):173–180

    Article  Google Scholar 

  63. Merchant ME, Field M (1949) Mechanics of formation of the discontinuous chip in metal cutting. Trans. ASME 71:421

    Google Scholar 

  64. Shaw MC (1986) Metal cutting principles. Oxford University Press, Oxford

    Google Scholar 

  65. ISO 3685, Tool life testing with single-point turning tools, ISO 231Standard, 3685 (1993) (E)

  66. Aggarwal A, Singh H, Kumar P, Singh M (2008) Optimization of multiple quality characteristics for CNC turning under cryogenic cutting environment using desirability function. J Mater Process Technol 205(1–3):42–50

    Article  Google Scholar 

  67. Astakhov VP (2006) Tribology of metal cutting. Tribol Met Cut 52:227

    Google Scholar 

  68. El Baradie MA (1996) Cutting fluids: part I. Characterisation. J Mater Process Technol 56(1–4):786–797

    Article  Google Scholar 

  69. Trent, E. M., and Wright, P. K., 2000, Metal Cutting

  70. Wang ZY, Petrescu G (2004) Stress analyses of CBN insert in hybrid machining of RBSN ceramic. Mach Sci Technol 8(1):1–19

    Article  Google Scholar 

  71. Willaiams JA, Tabor D (1977) The role of lubricants in machining. Wear 43:275–292

    Article  Google Scholar 

  72. Jawaid A, Che-Haron CH, Abdullah A (1999) Tool wear characteristics in turning of titanium alloy Ti-6246. J Mater Process Technol 92-93:329–334

    Article  Google Scholar 

  73. Corduan N, Himbart T, Poulachon G, Dessoly M, Lambertin M, Vigneau J, Payoux B (2003) Wear mechanisms of new tool materials for Ti-6AI-4 V high performance machining. CIRP Ann. - Manuf. Technol. 52(1):73–76

    Article  Google Scholar 

  74. Elmagrabi N, Che-Hassan CH, Jaharah AG, Shuaeib FM (2008) High speed milling of Ti 6Al 4 V using coated car-bide tools. Eur J Sci Res 22(2):153–162

    Google Scholar 

  75. Li J, Yuan Z, Zhou M (1989) Cryogenic ultra-precision machining of ferrous metals with natural diamond tools. Chinese Journal Mech Eng 25(1):69–72

    Google Scholar 

  76. Hwang YK, Lee CM, Park SH (2009) Evaluation of machinability according to the changes in machine tools and cooling lubrication environments and optimization of cutting conditions using Taguchi method. Int J Precis Eng Manuf 10(3):65–73

    Article  Google Scholar 

  77. Kalyankumar K, Choudhury S (2008) Investigation of tool wear and cutting force in cryogenic machining using design of experiments. J Mater Process Technol 203(1–3):95–101

    Article  Google Scholar 

  78. Rajemi MF, Mativenga PT, Aramcharoen A (2010) Sustainable machining: selection of optimum turning conditions based on minimum energy considerations. J Clean Prod 18(10–11):1059–1065

    Article  Google Scholar 

  79. Vieira JM, Machado AR, Ezugwu EO (2001) Performance of cutting fluids during face milling of steels. J Mater Process Technol 116(2–3):244–251

    Article  Google Scholar 

  80. Dahmus, J. B., and Gutowski, T. G., 2004, “An environmental analysis of machining,” Proc. of IMECE, ASME International Mechanical Engineering Congress and RD&D Expo

  81. Munoz AA, Sheng P (1995) An analytical approach for determining the environmental impact of machining processes. J Mater Process Technol 53:736–758

    Article  Google Scholar 

  82. Drake, R., Yildirim, M. B., Twomey, J. M., Whitman, L. E., Ahmad, J. S., and Lodhia, P., 2006, “Data collection framework on energy consumption in manufacturing,” Proceedings from Institute of Industrial Engineers Research Conference

  83. Kordonowy DN (2002) A power assessment of machining tools. Massachusetts Institute of Technology, Cambridge, Massachusetts

    Google Scholar 

  84. Diaz, N., Redelsheimer, E., and Dornfeld, D., 2011, “Energy consumption characterization and reduction strategies for milling machine tool use,” Glocalized Solutions for, pp. 263–267.

  85. Kara S, Li W (2011) Unit process energy consumption models for material removal processes. CIRP Ann. - Manuf. Technol. 60(1):37–40

    Article  Google Scholar 

  86. Shan Z, Qin S, Liu Q, Liu F (2012) Key manufacturing technology & equipment for energy saving and emissions reduction in mechanical equipment industry. Int J Precis Eng Manuf 13(7):1095–1100

    Article  Google Scholar 

  87. Reddy NSK, Rao PV (2006) Experimental investigation to study the effect of solid lubricants on cutting forces and surface quality in end milling. International J Machine Tools Manuf 46(2):189–198

    Article  Google Scholar 

  88. Dudzinski D, Devillez A, Moufki A, Larrouquère D, Zerrouki V, Vigneau J (2004) A review of developments towards dry and high speed machining of Inconel 718 alloy. Int J Mach Tools Manuf 44(4):439–456

    Article  Google Scholar 

  89. Strieder, E. H., 1951, “Application of Cutting Fluids to Machining,” Sci. Lubr

  90. Taylor FW (1907) On the art of cutting metals. Trans ASME 28:31–58

    Google Scholar 

  91. Runge, P., 1987, “Lubrificantes nas Indústrias (Lubricants in the Industries), Editora Tribo Concept, São Paulo, Brazil, (in Portuguese)..”

  92. Machado AR, Motta MF, da Silva MB (1997) Performance of synthetic and mineral soluble oil when turning AISI 8640 steel. Trans ASME, J Manuf Sci Eng 119:580–586

    Article  Google Scholar 

  93. Oberg, E., Jones, F. D., Horton, H. L., and Ryffel, H. H., Machinery’s Handbook & Guide to Machinery’s Handbook, Industrial Press

  94. Mendes OC, Ávila RF, Abrão Pedro Reis AM, Davim JP (2006) The performance of cutting fluids when machining aluminium alloys. Ind Lubr and Tribol 58(5):260–268

    Article  Google Scholar 

  95. Sheng, P. S., and Oberwalleney, S., 2016, “Life-cycle planning of cutting fluids—a review,” 1(November 1997), 1–10

  96. Grzesik W (2008) Advanced machining processes of metallic materials: theory, modelling and applications. Elsevier Science, Oxford

    Google Scholar 

  97. W, B., M, G., and D, P., 1999, “Assessment of the environmental release of chemicals used in metal-cutting and forming fluids. industry, IC8,” Emission scenario document – metal extraction industry, refining and processing, Dortmund, Germany

  98. Donachie, J. M. J., 2000, Titanium—a technical guide, ASM International

  99. Brandão LC, Coelho RT, Rodrigues AR (2008) Experimental and theoretical study of workpiece temperature when end milling hardened steels using (TiAl)N-coated and PcBN-tipped tools. J Mater Process Technol 199(1):234–244

    Article  Google Scholar 

  100. Gisip J, Gazo R, Stewart HA (2009) Effects of cryogenic treatment and refrigerated air on tool wear when machining medium density fiberboard. J Mater Process Technol 209(11):5117–5122

    Article  Google Scholar 

  101. Hong SY (2006) Lubrication mechanisms of Ln2 in ecological cryogenic machining. Mach Sci Technol 10(1):133–155

    Article  Google Scholar 

  102. Dhananchezian M, Pradeep Kumar M (2011) Cryogenic turning of the Ti-6Al-4V alloy with modified cutting tool inserts. Cryogenics (Guildf) 51(1):34–40

    Article  Google Scholar 

  103. López de Lacalle LN, Angulo C, Lamikiz A, Sánchez JA (2006) Experimental and numerical investigation of the effect of spray cutting fluids in high speed milling. J Mater Process Technol 172(1):11–15

    Article  Google Scholar 

  104. Feng, S. C., and Hattori, M., 2000, “Cost and process information modeling for dry machining,” Proceedings International Work. Environ. and Manufacturing, Natl. Institute Stand. Technology

  105. Klocke, F., and Eisenblatter, G., 1997, “Dry Cutting,” Ann. ClRP, 46(2)

  106. Hong SY, Zhao Z (1999) Thermal aspects, material considerations and cooling strategies in cryogenic machining. Clean Techn Environ Policy 1:107–116

    Article  Google Scholar 

  107. COSHH essentials for machining with metalworking fluids [online], health and safety; 2011. http://www.hse.gov.uk/metalworking/ecoshh.htm〉 (Ac-cessed 01–11 2011)

  108. Karadzic I, Masui A, Fujiwara N (2004) Purification and characterization of a protease from Pseudomonas Aeruginosa grown in cutting oil. J Biosci Bioeng 98(3):145–152

    Article  Google Scholar 

  109. Mattsby-Baltzer I, Sandin M, Ahlström B, Allenmark S, Edebo M, Falsen E, Pedersen K, Rodin N, Thompson RA, Edebo L (1989) Microbial growth and accumulation in industrial metal-working fluids. Appl Environ Microbiol 55(10):2681–2689

    Google Scholar 

  110. Sutherland JW, Kulur VN, King NC, von Turkovich BF (2000) An experimental investigation of air quality in wet and dry turning. CIRP Ann. - Manuf. Technol. 49(1):61–64

    Article  Google Scholar 

  111. Dhar NR, Islam S, Kamruzzaman M, Paul S (2006) Wear behavior of uncoated carbide inserts under dry, wet and cryogenic cooling conditions in turning C-60 steel. J Brazilian Soc Mech Sci Eng 28(2):146–152

    Article  Google Scholar 

  112. Theodosatos, A., and Haight, R., 2010, “Occupational dermatology,” Preventive Dermatology, pp. 103–113

  113. Kopac J (2009) Achievements of sustainable manufacturing by machining. Journal of Achievements in Materials and Manufacturing Engineering 34(2):180–187

    Google Scholar 

  114. Kustas FM, Fehrehnbacher LL, Komanduri R (1997) Nanocoatings on cutting tools for dry machining. CIRP Ann. - Manuf. Technol. 46(1):39–42

    Article  Google Scholar 

  115. Jawahir, I.S., and Dillon Jr., O. W., 2007, “Sustainable manufacturing processes: new challenges for developing predictive models and optimization techniques,” Proceedings of the 1st International Conference on Sustainable Manufacturing (SM1), Montreal, Canada

  116. Weinert K, Inasaki I, Sutherland JW, Wakabayashi T (2004) Dry machining and minimum quantity lubrication. CIRP Ann. - Manuf. Technol. 53(2):511–537

    Article  Google Scholar 

  117. Brinksmeier E, Meyer D, Huesmann-Cordes AG, Herrmann C (2015) Metalworking fluids - mechanisms and performance. CIRP Ann. - Manuf. Technol. 64(2):605–628

    Article  Google Scholar 

  118. Nedić B, Perić S, Vuruna M (2009) Monitoring physical and chemical characteristics oil for lubrication. Tribol Ind 31(3–4):59–66

    Google Scholar 

  119. Meyer, D., 2011, “Online monitoring of the chemical and microbial properties of metalworking fluids the electronic nose.,” Proceedings of the Fourth Symposium on Metal Removal Fluids, Barcelona, Spain, pp. 121–127

  120. David R (2011) Monitoring and maintaining MWFs. Tribol Lubr Technol 67(3):80

    Google Scholar 

  121. Rakić R, Rakić Z (2002) The influence of the metal working fluids on machine tool failures. Wear 252(5–6):438–444

    Article  Google Scholar 

  122. Koch T, Passman F, Rabenstein A (2015) Comparative study of microbiological monitoring of water-miscible metalworking fluids. Int Biodeterior Biodegrad 98:19–25

    Article  Google Scholar 

  123. Bock, W., 2001, “Lubricants and the environment: specifications of the rapidly biodegradable lubricants,” Proceedings of the International Tribology Conference, Technical Academy Esslingen

  124. Winter, M., Öhlschläger, G., Dettmer, T., Ibbotson, S., Kara, S., and Herrmann, C., 2012, “using jatropha oil based metalworking fluids in machining processes: a functional and ecological life cycle evaluation,” 19th CIRP International Conference on Life Cycle Engineering, Berkeley, pp. 311–316

  125. Lea CW (2002) European development of lubricants derived from renewable resources. Ind Lubr Tribol 54(6):268–274

    Article  Google Scholar 

  126. Herrmann, C., Hesselbach, J., Bock, R., and Dettmer, T., 2007, “Coolants made of native ester—technical, ecological and cost assessment from a life cycle perspective,” 14th CIRP Conf. Life Cycle Eng. Adv. Life Cycle Eng. Sustain. Manuf. Businesses, pp. 299–303

  127. Dettmer, T., 2006, “Nichtwassermischbare Kühlschmierstoffe auf Basis nachwachsender Rohstoffe, Vulkan-Verlag, Essen, Germany”

  128. Lawal SA, Choudhury IA, Nukman Y (2012) Application of vegetable oil-based metalworking fluids in machining ferrous metals - a review. Int J Mach Tools Manuf 52(1):1–12

    Article  Google Scholar 

  129. Oda Y, Kawamura Y, Fujishima M (2012) Energy consumption reduction by machining process improvement. Procedia CIRP 4:120–124

    Article  Google Scholar 

  130. Shimoda, M., 2002, “LCA Case of Machine Tool,” Proc. Symposium of the Japan Society for Precision Engineering Spring Annual Meeting., pp. 37–41

  131. Denkena B, Helmecke P, Hülsemeyer L (2014) Energy efficient machining with optimized coolant lubrication flow rates. Procedia CIRP 24 :25–31Mic

    Article  Google Scholar 

  132. Nouari M, Ginting A (2006) Wear characteristics and performance of multi-layer CVD-coated alloyed carbide tool in dry end milling of titanium alloy. Surf Coatings Technol 200(18–19):5663–5676

    Article  Google Scholar 

  133. Dearnley P, Grearson A (1986) Evaluation of principal wear mechanisms of cemented carbides and ceramics used for machining titanium alloy IMI 318. Mater Science and Technology 2:47

    Article  Google Scholar 

  134. Krain HR, Sharman ARC, Ridgway K (2007) Optimisation of tool life and productivity when end milling Inconel 718TM. J Mater Process Technol 189(1–3):153–161

    Article  Google Scholar 

  135. Nabhani F (2001) Machining of aerospace titanium alloys. Robot Comput-Integ Manuf 17:99–106

    Article  Google Scholar 

  136. Liu J, Yamazaki K, Ueda H, Narutaki N, Yamane Y (2002) Machinability of pearlitic cast iron with cubic boron nitride (CBN) cutting tools. J Manuf Science and Engineering 124:820

    Article  Google Scholar 

  137. Nouari M, List G, Girot F, Coupard D (2003) Experimental analysis and optimisation of tool wear in dry machining of aluminium alloys. Wear 255(7–12):1359–1368

    Article  Google Scholar 

  138. Noorul Haq A, Tamizharasan T (2005) Investigation of the effects of cooling in hard turning operations. International J Adv Manuf Technology 30:808–816

    Article  Google Scholar 

  139. Jen TC, Gutierrez G, Eapen S, Barber G, Zhao H, Szuba PS, Labataille J, Manjunathaiah J (2002) Investigation of heat pipe cooling in drilling applications. Part I: preliminary numerical analysis and verification. Int J Mach Tools Manuf 42(5):643–652

    Article  Google Scholar 

  140. UNIST. UNIST, Inc., Official Website (Online). http://www.unist.com/aboutus.htm〉 (Accessed 5 January 2012), 2012

  141. Kamata Y, Obikawa T (2007) High speed MQL finish-turning of Inconel 718 with different coated tools. J Mater Process Technol 192-193:281–286

    Article  Google Scholar 

  142. Sales W, Becker M, Barcellos CS, Landre J Jr, Bonney J, Ezugwu EO (2009) Tribological behaviour when face milling AISI 4140 steel with minimum quantity fluid application. Industrial Lubr Tribol 61:84–90

    Article  Google Scholar 

  143. Veiga C, Davim JP, Loureiro AJR (2013) Review on machinability of titanium alloys: the process perspective. Rev Adv Mater Sci 34(2):148–164

    Google Scholar 

  144. Timmerhaus, K. D., and Reed, R. P., 2007, Cryogenic engineering: fifty years of progress, Springer

  145. Zhao Z, Hong SY (1992) Cooling strategies for cryogenic machining from a materials viewpoint. J Mater Eng Perform 1(5):669–678

    Article  Google Scholar 

  146. De Chiffre L, Andreasen JL, Lagerberg S, Thesken IB (2007) Performance testing of cryogenic CO2 as cutting fluid in parting/grooving and threading austenitic stainless steel. CIRP Ann. - Manuf. Technol. 56(1):101–104

    Article  Google Scholar 

  147. KAKINUMA Y, YASUDA N, AOYAMA T (2008) Micromachining of soft polymer material applying cryogenic cooling. J Adv Mech Des Syst Manuf 2(4):560–569

    Google Scholar 

  148. Evans C, Bryan JB (1991) Cryogenic diamond turning of stainless steel. CIRP Ann. - Manuf. Technol. 40(1):571–575

    Article  Google Scholar 

  149. Venugopal K a, Paul S, Chattopadhyay AB (2007) Tool wear in cryogenic turning of Ti-6Al-4V alloy. Cryogenics (Guildf) 47(1):12–18

    Article  Google Scholar 

  150. Su Y, He N, Li L, Iqbal A, Xiao MH, Xu S, Qiu BG (2007) Refrigerated cooling air cutting of difficult-to-cut materials. Int J Mach Tools Manuf 47(6):927–933

    Article  Google Scholar 

  151. Bhattacharyya D, Allen MN, Mander SJ (1993) Cryogenic machining of kevlar composites. Mater Manuf Process 8(6):631–651

    Article  Google Scholar 

  152. Ghosh R (2005) Interrupted hard turning with cryogenically cooled ceramic tools. Transactions North Am Manufacturing Res Inst SME 33:161–169

    Google Scholar 

  153. Ahmed MI, Ismail AF, Abakr YA, Amin AKMN (2007) Effectiveness of cryogenic machining with modified tool holder. J Mater Process Technol 185(1–3):91–96

    Article  Google Scholar 

  154. Hong SY, Ding Y (2001) Micro-temperature manipulation in cryogenic machining of low carbon steel. J Mater Process Technol 116(1):22–30

    Article  Google Scholar 

  155. Khan AA, Ahmed MI (2008) Improving tool life using cryogenic cooling. J Mater Process Technol 196(1–3):149–154

    Article  Google Scholar 

  156. Lockheed Martin’s F-35 stealth fighter plane http://www.lockheedmartin.com/news/press_releases/2011/110915ae_f35_newtitanium.htm Accessed 6 January 2012)

  157. Pereira O, Català P, Rodríguez A, Ostra T, Vivancos J, Rivero A, López-de-Lacalle LN (2015) The use of hybrid CO2 + MQL in machining operations. Procedia Eng 132:492–499

    Article  Google Scholar 

  158. WolfinbargerJr, L., Sutherland, V., Braendle, L., and Sutherland, G., 1996, “Engineering aspects of cryobiology,” Advances in Cryogenic Engineering, pp. 1–12

  159. Pušavec F, Kopač J (2011) Sustainability assessment: cryogenic machining of inconel 718. Stroj Vestnik/Journal Mech Eng 57(9):637–647

    Article  Google Scholar 

  160. Pigott R, Colwell A (1952) Hi-jet system for increasing tool life. SAE Tech Pap 3:547

    Google Scholar 

  161. Ramaiyengar HS, Salmon R, Rice WB Some effects of cutting fluids on Chip Forrnation in metal cutting. ASME J Eng Ind Ser B 87:36–38

  162. Mazurkiewicz M, Kubala Z, Chow J (1989) Metal machining with high-pressure water-jet cooling assistance—a new possibility. J Eng Ind 111(1):7–12

    Article  Google Scholar 

  163. Wertheim R, Rotberg J, Ber A (1992) Influence of high-pressure flushing through the rake face of the cutting tool. CIRP Ann - Manuf Technol 41(1):101–106

    Article  Google Scholar 

  164. Gandarias A, de Lacalle LNL, Aizpitarte X, Lamikiz A (2008) Study of the performance of the turning and drilling of austenitic stainless steels using two coolant techniques. Int J Mach Mach Mater 3(1–2):1–17

    Google Scholar 

  165. Liu J, Kevin Chou Y (2007) On temperatures and tool wear in machining hypereutectic Al-Si alloys with vortex-tube cooling. Int J Mach Tools Manuf 47(3–4):635–645

    Article  Google Scholar 

  166. Rahman M, Kumar AS, Salam M-U, Ling MS (2003) Effect of chilled air on machining performance in end milling. Int J Adv Manuf Technol 21(10–11):787–795

    Article  Google Scholar 

  167. Kim SW, Lee DW, Kang MC, Kim JS (2001) Evaluation of machinability by cutting environments in high-speed milling of difficult-to-cut materials. J Mater Process Technol 111(1–3):256–260

    Article  Google Scholar 

  168. Yalcin B, Ozgur AE, Koru M (2009) The effects of various cooling strategies on surface roughness and tool wear during soft materials milling. Mater Des 30(3):896–899

    Article  Google Scholar 

  169. Nandy AK, Gowrishankar MC, Paul S (2009) Some studies on high-pressure cooling in turning of Ti-6Al-4 V. Int J Mach Tools Manuf 49(2):182–198

    Article  Google Scholar 

  170. 2013, High pressure coolant machining for better productivity and results, Fair Lawn, New Jersey: Sandvik Coromant, 2013

  171. ISCAR, “HELITURN” [Online]. Available: http://www.iscar.com/Products.aspx/CountryId/1/ProductId/5438. [Accessed: 13-May-2016]

  172. Tools, S., “Developed Jetstream Tooling®—a revolutionary new coolant system” [Online]. Available: https://www.secotools.com/en/Global/Products/Turning/Jetstream-Tooling/. [Accessed: 13-May-2016]

  173. Drlička R, Kročko V, Matúš M (2014) Machinability improvement using high-pressure cooling in turning. Res Agr Eng 60:70–76

    Google Scholar 

  174. ChipBlaster, “Fixed Volume High Pressure System (D30–35)” [Online]. Available: http://www.chipblaster.com/view-resource/76. [Accessed: 13-May-2016]

  175. Sørby K, Tønnessen K (2006) High-pressure cooling of face-grooving operations in Ti6Al4V. Proc Inst Mech Eng Part B J Eng Manuf 220(10):1621–1627

    Article  Google Scholar 

  176. Herranz S, Campa FJ, de Lacalle LNL, Rivero A, Lamikiz A, Ukar E, Sánchez JA, Bravo U (2005) The milling of airframe components with low rigidity : a general approach to avoid static and dynamic problems. Proc Inst Mech Eng , Part B J Eng Manuf J Eng Manuf 219:789–801

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salman Pervaiz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharif, M.N., Pervaiz, S. & Deiab, I. Potential of alternative lubrication strategies for metal cutting processes: a review. Int J Adv Manuf Technol 89, 2447–2479 (2017). https://doi.org/10.1007/s00170-016-9298-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9298-5

Keywords

Navigation