Skip to main content
Log in

Cooling strategies for cryogenic machining from a materials viewpoint

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This article discusses the cooling strategies for cryogenic machining from a materials viewpoint. It is argued that, because different materials respond to temperature and machining processes differently, different cooling strategies are needed to improve the machinabilities of materials by cryogenic machining. In this work, five workpiece materials such as AISI1010 low-carbon steel, AISI1070 high-carbon steel, AISIE52100 bearing steel, titanium alloy Ti-6Al-4V, and cast aluminum alloy A390 were studied experimentally at various temperatures. Based on the experimental results of the cryogenic properties of the materials and their known machining characteristics, the cooling strategies for cryogenic machining of these materials were analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Trigger and B.T. Chao,Trans. ASME, Vol 73, 1951, p 57–68.

    Google Scholar 

  2. N.N Zorev, inMetal Cutting Mechanics, Pergamon Press, Oxford, 1966, p 195–201.

    Google Scholar 

  3. J.E. Williams, E.F. Smart, and D.R. Milner,Metallurgia, Vol 81, 1970, p 3–10.

    Google Scholar 

  4. P.K. Wright and A. BstgchiJ. Applied Metalworking, Vol 1,198?, pl5.

  5. J. Larsen-Base,Selection of MaterialsJor Service Environments: Source Book, ASM International, 1987, p 188–195.

  6. E.M. Trent,Metal Cutting, Butterworths, London, 1977.

    Book  Google Scholar 

  7. H. Takeyama and R. Murata,Trans. ASME, J. Eng. Ind., Vol 85, 1963, p 33–38.

    Article  Google Scholar 

  8. K. Neailey,Metals and Materials, Feb 1988, p 93.

  9. A.B. Sadat and J.A. Bailey,Experimental Mechanics, Mar 1987, p 80.

  10. B.F. vonTurkovich,Ann. CIRP,Vol30, 1981,p533.

    Article  CAS  Google Scholar 

  11. E.M. Trent,Wear, Vol 128, 1988, p 65.

    Article  CAS  Google Scholar 

  12. R. Komanduri,High Productivity Machining: Materials and Process, V.K. Sarin, Ed., American Society for Metals, 1985, p 329.

  13. R. Komanduri, D.G. Flom, and M. Lee,J. Eng. Ind., Vol 107, 1985, p 325.

    Article  Google Scholar 

  14. F.A. Monash,Metalworking Production, Oct 1960, p 83.

  15. W. Dillon, R.J. De Angelis, W.Y. Lu, J.S. Gunasekera, and J.A. Deno,J. Mater. Shap. Technol, Vol 8, 1990, p 23.

    Article  Google Scholar 

  16. T. Araki, S. Yamamoto, and H. Nakajima,High Productivity Machining: Materials and Process, V.K. Sarin, Ed., American Society for Metals, 1985, p 131.

  17. M. Masuko and J. Kumabe,Bull, of Japanese Society of Mechanical Engineering, Vol 2, 1959, p 487.

    Article  Google Scholar 

  18. W.B. Rice, R. Salmon, and A.G. Advani,Int. J. Mach. Tool Des. Res.,Vol6, 1966, p 143.

    Article  Google Scholar 

  19. K. Uehara and S. Kumagai,Ann. CIRP, Vol 17, 1969, p 409.

    Google Scholar 

  20. K. Uehara and S. Kumagai,Ann. CIRP, Vol 18, 1970, p 273.

    Google Scholar 

  21. N. Gane,Mech. Eng.Trans.Australia,ME3, 1978,p5.

    Google Scholar 

  22. C. Spaans, “The Fundamentals of Three-Dimensional Chip Curl, Chip Breaking and Chip Control,” Ph.D. thesis, TH Delft, 1971.

  23. N.H. Cook, P. Jhaveri, and N. Nayak,Trans. ASME, Vol B85, 1963, p 184.

    Google Scholar 

  24. ASM Metals Reference Book, 2nd ed., American Society for Metals, 1983, p 184.

  25. E.F. Smart and E.M. Trent,Int. J. Prod. Res., Vol 13, 1975, p265.

    Article  Google Scholar 

  26. J.L. Jorstad,Trans. Metall. Soc. AIME, Vol 242, 1968, p 1217.

    CAS  Google Scholar 

  27. J.L. Jorstad, Paper No. 800486, presented at SAE Congress and Exposition, Feb 1980.

  28. E.M. Collings,The Physical Metallurgy of Titanium Alloys, American Society for Metals, 1983.

  29. A.R. Machado and J. Wallbank,Proc. Inst. Mech. Eng., Vol 204, 1990, p 53.

    Article  Google Scholar 

  30. R. Komanduri and B.F. von Turkovich,Wear, Vol 69, 1981, p 179.

    Article  CAS  Google Scholar 

  31. M.J. Donachie, Jr.,Titanium: A Technical Guide, American Society for Metals, 1982, p 163.

  32. W.S. Hollis,Int. J. Mach. Tool Res., Vol 1, 1961, p 59.

    Article  Google Scholar 

  33. R.S. Reed,Machinery, 1965, p 79.

  34. E.H. Rennhack and N.D. Carlsted,Transition in Technology, 1974, p 467.

  35. J.D. Christopher, Technical Paper No. MR90-249, SME, 1990.

  36. X.Y. Xuan, “An Experimental Study of the Mechanics of Metal Cutting,” Ph.D. thesis, University of Kentucky, 1991.

  37. P. D. Hartung and B. M. Kramer,Ann. CIRP, Vol 31, 1982, p 75.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Z., Hong, S.Y. Cooling strategies for cryogenic machining from a materials viewpoint. JMEP 1, 669–678 (1992). https://doi.org/10.1007/BF02649248

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649248

Keywords

Navigation