Skip to main content

Advertisement

Log in

Environmentally conscious hybrid bio-composite material selection for automotive anti-roll bar

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In the design of automotive components, substitution of metal with natural fibre as base material is commonly found due to high-energy consumption in producing metal components that affects the environment. Therefore, in this study, natural fibres were selected for a hybrid bio-composite material in the design for an automotive anti-roll bar in order to determine the suitable natural fibre that could satisfy the requirements both of customers and the environment. The study was performed using a combination of Analytic Hierarchy Process and Quality Function Deployment for Environment. In making the final decision, life cycle assessment was performed to support the environmental requirements. The results show that sugar palm fibre is the fibre that can best satisfy the design requirements, with 21.51 % of the total score, followed by kenaf, which obtained 20.18 %. Lastly, both the fibres were compared for the life cycle assessment and the results show that sugar palm has a 10 % lower impact on the environment due to its lower energy consumption and CO2 footprint. Hence, sugar palm fibre is selected as the material to use in the hybrid bio-composite for the automotive anti-roll bar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shin J-H, Jun H-B, Kiritsis D, Xirouchakis P (2011) A decision support method for product conceptual design considering product lifecycle factors and resource constraints. Int J Adv Manuf Technol 52(9–12):865–886. doi:10.1007/s00170-010-2798-9

    Article  Google Scholar 

  2. Bovea MD, Pérez-Belis V (2012) A taxonomy of ecodesign tools for integrating environmental requirements into the product design process. J Clean Prod 20:61–71. doi:10.1016/j.jclepro.2011.07.012

    Article  Google Scholar 

  3. Ahmad F, Choi HS, Park MK (2015) A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromol Mater Eng 300(1):10–24. doi:10.1002/mame.201400089

    Article  Google Scholar 

  4. AL-Oqla FM, Sapuan SM, Ishak MR, Nuraini AA (2016) A decision-making model for selecting the most appropriate natural fiber—polypropylene-based composites for automotive applications. J Compos Mater 50(4):543–556. doi:10.1177/0021998315577233

    Article  Google Scholar 

  5. Sharma K, Bora PM, Sharma PK (2012) Hollow cross-section vs.solid cross-section & increasing the diameter of solid cross-section by using finite element analysis of anti-roll bar. Int J Adv Res Sci Eng 1(1):1–11

    Google Scholar 

  6. Bayrakceken H, Tasgetiren S, Aslantas K (2006) Fracture of an automobile anti-roll bar. Eng Fail Anal 13(5):732–738. doi:10.1016/j.engfailanal.2005.04.002

    Article  Google Scholar 

  7. Prawoto Y, Djuansjah JRP, Tawi KB, Fanone MM (2013) Tailoring microstructures: a technical note on an eco-friendly approach to weight reduction through heat treatment. Mater Des 50:635–645. doi:10.1016/j.matdes.2013.03.062

    Article  Google Scholar 

  8. Dhingra R, Das S (2014) Life cycle energy and environmental evaluation of downsized vs. lightweight material automotive engines. J Clean Prod 85:347–358. doi:10.1016/j.jclepro.2014.08.107

    Article  Google Scholar 

  9. Renner O, Krahl M, Lepper M, Hufenbach W (2014) Stabilizer bar of fiber reinforced plastic composite and method for its manufacture., US Patent 8,668,212 B2, 11 Mar 2014

    Google Scholar 

  10. Burchart-Korol D (2013) Life cycle assessment of steel production in Poland: a case study. J Clean Prod 54:235–243. doi:10.1016/j.jclepro.2013.04.031

    Article  Google Scholar 

  11. Olmez GM, Dilek FB, Karanfil T, Yetis U (2016) The environmental impacts of iron and steel industry: a life cycle assessment study. J Clean Prod 130:195–201. doi:10.1016/j.jclepro.2015.09.139

    Article  Google Scholar 

  12. Koronis G, Silva A, Fontul M (2013) Green composites: a review of adequate materials for automotive applications. Compos Part B Eng 44(1):120–127. doi:10.1016/j.compositesb.2012.07.004

    Article  Google Scholar 

  13. Zarandi MHF, Mansour S, Hosseinijou SA, Avazbeigi M (2011) A material selection methodology and expert system for sustainable product design. Int J Adv Manuf Technol 57(9–12):885–903. doi:10.1007/s00170-011-3362-y

    Article  Google Scholar 

  14. Mayyas AT, Qattawi A, Mayyas AR, Omar M (2013) Quantifiable measures of sustainability: a case study of materials selection for eco-lightweight auto-bodies. J Clean Prod 40:177–189. doi:10.1016/j.jclepro.2012.08.039

    Article  Google Scholar 

  15. Jeya Girubha R, Vinodh S (2012) Application of fuzzy VIKOR and environmental impact analysis for material selection of an automotive component. Mater Des 37:478–486. doi:10.1016/j.matdes.2012.01.022

    Article  Google Scholar 

  16. Prasad K, Chakraborty S (2013) A quality function deployment-based model for materials selection. Mater Des 49:525–535. doi:10.1016/j.matdes.2013.01.035

    Article  Google Scholar 

  17. Scalice RK, Brascher GC, Becker D (2012) A knowledge-based material selector using Quality Function Deployment principles. Prod Manag Dev 10:23–32. doi:10.4322/pmd.2012.011

    Article  Google Scholar 

  18. Kasaei A, Abedian A, Milani AS (2014) An application of Quality Function Deployment method in engineering materials selection. Mater Des 55:912–920. doi:10.1016/j.matdes.2013.10.061

    Article  Google Scholar 

  19. Mayyas A, Shen Q, Mayyas A, Shan D, Qattawi A, Omar M (2011) Using Quality Function Deployment and Analytical Hierarchy Process for material selection of Body-In-White. Mater Des 32(5):2771–2782. doi:10.1016/j.matdes.2011.01.001

    Article  Google Scholar 

  20. Masui K, Sakao T, Inaba A (2001) Quality function deployment for environment: QFDE (1st report)—a methodology in early stage of DfE. In: Proc. Second Int. Symp. Environ. Conscious Des. Inverse Manuf., Tokyo, 11–15 Dec 2001 pp 852–857. doi:10.1109/.2001.992480

  21. Wu Y, Luo B, Li M (2009) Quality function deployment for environment in product eco-design.In: Int Conf Energy Environ Technol, Guilin, Guangxi, 16–18 Oct 2009, 3:476–479. doi: 10.1109/ICEET.2009.581

  22. Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York

    MATH  Google Scholar 

  23. Vinodh S, Jayakrishna K (2011) Environmental impact minimisation in an automotive component using alternative materials and manufacturing processes. Mater Des 32(10):5082–5090. doi:10.1016/j.matdes.2011.06.025

    Article  Google Scholar 

  24. Marzbanrad J, Yadollahi A (2012) Fatigue life of an anti-roll bar of a passenger vehicle. World Acad Sci Eng Technol 6(2):204–210

    Google Scholar 

  25. Shinde P, Patnaik MMM (2013) Parametric optimization to reduce stress concentration at corner bends of solid and hollow stabilizer bar. Int J Res Aeronaut Mech Eng 1(4):1–15

    Google Scholar 

  26. Saaty TL (2003) Decision-making with the AHP: why is the principal eigenvector necessary. Eur J Oper Res 145(1):85–91. doi:10.1016/S0377-2217(02)00227-8

    Article  MathSciNet  MATH  Google Scholar 

  27. Xu Z, Wei C (1999) A consistency improving method in the analytic hierarchy process. Eur J Oper Res 116(2):443–449. doi:10.1016/S0377-2217(98)00109-X

    Article  MATH  Google Scholar 

  28. Chang C-W, Wu C-R, Lin C-T, Chen H-C (2007) An application of AHP and sensitivity analysis for selecting the best slicing machine. Comput Ind Eng 52(2):296–307. doi:10.1016/j.cie.2006.11.006

    Article  Google Scholar 

  29. More R, Vachhani D, Raval C (2015) Durability prediction of rear engine bus using virtual proving ground road loads. SAE Tech Pap, No. 2015-26-0237. doi: 10.4271/2015-26-0237

  30. Caliskan K (2003) Automated design analysis of anti-roll bars, Dissertation, Middle East Technical University

    Google Scholar 

  31. AL-Oqla FM, Sapuan SM (2014) Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. J Clean Prod 66:347–354. doi:10.1016/j.jclepro.2013.10.050

    Article  Google Scholar 

  32. Leroux F, Rabu P, Sommerdijk NAJM, Taubert A (2015) Hybrid materials engineering in biology, chemistry, and physics. Eur J Inorg Chem 2015(7):1086–1088. doi:10.1002/ejic.201500098

    Article  Google Scholar 

  33. Funke H, Gelbrich S, Ehrlich A (2013) Development of a new hybrid material of textile reinforced concrete and glass fibre reinforced plastic. Procedia Mater Sci 2:103–110. doi:10.1016/j.mspro.2013.02.013

    Article  Google Scholar 

  34. Kistaiah N, Kiran CU, Reddy GR, Rao MS (2014) Mechanical characterization of hybrid composites: a review. J Reinf Plast Compos 33(14):1364–1372. doi:10.1177/0731684413513050

    Article  Google Scholar 

  35. Jawaid M, Abdul Khalil HPS, Noorunnisa Khanam P, Abu BA (2011) Hybrid composites made from oil palm empty fruit bunches/jute fibres: water absorption, thickness swelling and density behaviours. J Polym Environ 19(1):106–109. doi:10.1007/s10924-010-0203-2

    Article  Google Scholar 

  36. Bledzki AK, Franciszczak P, Meljon A (2015) High performance hybrid PP and PLA biocomposites reinforced with short man-made cellulose fibres and softwood flour. Compos Part A Appl Sci Manuf 74:132–139. doi:10.1016/j.compositesa.2015.03.029

    Article  Google Scholar 

  37. AL-Oqla FM, Sapuan SM, Ishak MR, Nuraini AA (2015) Predicting the potential of agro waste fibers for sustainable automotive industry using a decision making model. Comput Electron Agric 113:116–127. doi:10.1016/j.compag.2015.01.011

    Article  Google Scholar 

  38. Furtado SCR, Araujo A, Silva A, Alves C, Ribeiro AMR (2014) Natural fibre-reinforced composite parts for automotive applications. Int J Automot Compos 1(1):18–38, 10.1504/IJAUTOC.2014.064112

  39. Puglia D, Biagiotti J, Kenny J (2004) A review on natural fibre-based composites—Part II: application of natural reinforcements in composite materials for automotive industry. J Nat Fibers 1(3):23–65. doi:10.1300/J395v01n03_03

    Article  Google Scholar 

  40. Ashby MF (2004) Materials Selection in Mechanical Design, 3rd edn. Elsevier Butterworth-Heinemann, Oxford

    Google Scholar 

  41. Mustafa A, Abdollah MFB, Shuhimi FF, Ismail N, Amiruddin H, Umehara N (2015) Selection and verification of kenaf fibres as an alternative friction material using Weighted Decision Matrix method. Mater Des 67:577–582. doi:10.1016/j.matdes.2014.10.091

    Article  Google Scholar 

  42. AL-Oqla FM, Sapuan SM, Ishak MR, Nuraini AA (2015) Selecting natural fibers for bio-based materials with conflicting criteria. Am Journa Appl Sci 12(1):64–71. doi:10.3844/ajassp.2015.64.71

    Article  Google Scholar 

  43. Li C, Kim IY, Jeswiet J (2014) Conceptual and detailed design of an automotive engine cradle by using topology, shape, and size optimization. Struct Multidiscip Optim 51(2):547–564. doi:10.1007/s00158-014-1151-6

    Article  Google Scholar 

  44. Ishak MR, Sapuan SM, Leman Z, Rahman MZA, Anwar UMK (2011) Characterization of sugar palm (Arenga pinnata) fibres. J Therm Anal Calorim 109(2):981–989. doi:10.1007/s10973-011-1785-1

    Article  Google Scholar 

  45. Williams GI, Wool RP (2000) Composites from natural fibers and soy oil resins. Appl Compos Mater 7(5–6):421–432. doi:10.1023/A:1026583404899

    Article  Google Scholar 

  46. Sapuan SM (2014) Tropical natural fibre composites: properties, manufacture and applications. Springer, Singapore. doi:10.1533/9780857099228.3.365

    Google Scholar 

  47. Mohanty AK, Misra M, Drzal LT (2001) Surface modifications of natural fibers and performance of the resulting biocomposites: an overview. Compos Interfaces 8(5):313–343. doi:10.1163/156855401753255422

    Article  Google Scholar 

  48. Misri S, Leman Z, Sapuan SM, Ishak MR (2010) Mechanical properties and fabrication of small boat using woven glass/sugar palm fibres reinforced unsaturated polyester hybrid composite. In: IOP Conf. Ser.: Mater. Sci. Eng. IOP Publishing, Vol 11(1)

  49. Ishak MR, Sapuan SM, Leman Z, Rahman MZA, Anwar UMK, Siregar JP (2013) Sugar palm (Arenga pinnata): its fibres, polymers and composites. Carbohydr Polym 91(2):699–710. doi:10.1016/j.carbpol.2012.07.073

    Article  Google Scholar 

  50. Akil HM, Omar MF, Mazuki AAM, Safiee S, Ishak ZAM, Abu Bakar A (2011) Kenaf fiber reinforced composites: a review. Mater Des 32(8–9):4107–4121. doi:10.1016/j.matdes.2011.04.008

    Article  Google Scholar 

  51. Saba N, Jawaid M, Hakeem KR, Paridah MT, Khalina A, Alothman OY (2015) Potential of bioenergy production from industrial kenaf (Hibiscus cannabinus L.) based on Malaysian perspective. Renew Sustain Energy Rev 42:446–459. doi:10.1016/j.rser.2014.10.029

    Article  Google Scholar 

  52. Saba N, Paridah MT, Jawaid M (2015) Mechanical properties of kenaf fibre reinforced polymer composite: a review. Constr Build Mater 76:87–96. doi:10.1016/j.conbuildmat.2014.11.043

    Article  Google Scholar 

  53. Lim ZY, Putra A, Nor MJ, Yaakob M (2015) Preliminary study on sound absorption of natural kenaf fiber. In: Proc. Mech. Eng. Res. Day 2015. Centre for Advanced Research on Energy, Melaka, pp 95–96

  54. Davoodi MM, Sapuan SM, Ahmad D, Ali A, Khalina A, Jonoobi M (2010) Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam. Mater Des 31(10):4927–4932. doi:10.1016/j.matdes.2010.05.021

    Article  Google Scholar 

  55. Mansor MR, Sapuan SM, Zainudin ES, Nuraini AA, Hambali A (2014) Conceptual design of kenaf fiber polymer composite automotive parking brake lever using integrated TRIZ–Morphological Chart–Analytic Hierarchy Process method. Mater Des 54:473–482. doi:10.1016/j.matdes.2013.08.064

    Article  Google Scholar 

  56. Borchardt M, Wendt MH, Pereira GM, Sellitto MA (2011) Redesign of a component based on ecodesign practices: environmental impact and cost reduction achievements. J Clean Prod 19(1):49–57. doi:10.1016/j.jclepro.2010.08.006

    Article  Google Scholar 

  57. Fiksel J (1995) Design for Environment, McGraw-Hill Professional Publishing. doi:10.2307/302397

  58. Fiksel J (2006) Sustainability and resilience: toward a systems approach. Sustain Sci Pract Policy 2(2):14–21

    Google Scholar 

  59. Song YS, Youn JR, Gutowski TG (2009) Life cycle energy analysis of fiber-reinforced composites. Compos Part A Appl Sci Manuf 40(8):1257–1265. doi:10.1016/j.compositesa.2009.05.020

    Article  Google Scholar 

  60. Doody M (2013) Design and development of a composite automotive anti-roll bar, Dissertation, University of Windsor

    Google Scholar 

  61. Kanna LS, Tare SV, Kalje AM (2014) Feasibility of hollow stability bar. IOSR J Mech Civ Eng 2014:76–80

    Google Scholar 

  62. Purohit M, Kadre S, Shingavi S,Yogesh W, Drishtipan K (2011) Analysis of stabilizer bar using simplified approach. Chinchwad Pune

  63. Scott MJ, Antonsson EK (1998) Chapter 8: Preliminary vehicle structure design application. In: 10th Int. Conf. Des. Theory Methodol. ASME. pp 183–204

  64. Wittek A-M, Richter H-C, Lazarz B (2011) Stabilizer bars : Part 2. Calculations-example. Transp Probl 6(1):137–145

    Google Scholar 

  65. Wittek A-M, Richter H-C, Lazarz B (2010) Stabilizer bars : Part 1. Calculations and construction. Transp Probl 5(4):135–143

    Google Scholar 

  66. Ariff H, Salit MS, Ismail N, Nukman Y (2008) Use of analytical hierarchy process (ahp) for selecting the best design concept. J Teknol 49(1):1–18, 10.11113/jt.v49.188

  67. Raharjo H, Endah D (2006) Evaluating relationship of consistency ratio and number of alternatives on rank reversal in the AHP. Qual Eng 18(1):39–46. doi:10.1080/08982110500403516

    Article  Google Scholar 

  68. Dicker MPM, Duckworth PF, Baker AB, Francois G, Hazzard MK, Weaver PM (2014) Green composites: a review of material attributes and complementary applications. Compos Part A: Appl Sci Manuf 56:280–289. doi:10.1016/j.compositesa.2013.10.014

    Article  Google Scholar 

  69. Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596. doi:10.1016/j.progpolymsci.2012.04.003

    Article  Google Scholar 

  70. Bachtiar D, Sapuan SM, Zainudin ES, Khalina A, Dahlan KZM (2010) The tensile properties of single sugar palm (Arenga pinnata) fibre. In: IOP Conf. Ser. Mater. Sci. Eng. Vol 11(1)

  71. Zampaloni M, Pourboghrat F, Yankovich SA, Rodgers BN, Moore J, Drzal LT, Mohanty AK, Misra M (2007) Kenaf natural fiber reinforced polypropylene composites: a discussion on manufacturing problems and solutions. Compos Part A: Appl Sci Manuf 38(6):1569–1580. doi:10.1016/j.compositesa.2007.01.001

    Article  Google Scholar 

  72. Ramamoorthy SK, Skrifvars M, Persson A (2015) A Review of natural fibers used in biocomposites: plant, animal and regenerated cellulose fibers. Polym Rev 55(1):107–162. doi:10.1080/15583724.2014.971124

    Article  Google Scholar 

  73. Sahari J, Sapuan SM, Zainudin ES, Maleque MA (2012) Sugar palm tree : a versatile plant and novel source for biofibres, biomatrices, and biocomposites. Polym Renewable Resour 3(2):61–78

    Google Scholar 

  74. Goda K, Cao Y (2007) Research and development of fully green composites reinforced with natural fibers. J Solid Mech Mater Eng 1(9):1073–1084. doi:10.1299/jmmp.1.1073

    Article  Google Scholar 

  75. Kelly-Yong TL, Lee KT, Mohamed AR, Bhatia S (2007) Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide. Energy Policy 35(11):5692–5701. doi:10.1016/j.enpol.2007.06.017

    Article  Google Scholar 

  76. Devi LU, Bhagawan SS, Thomas S (1997) Mechanical properties of pineapple leaf fiber-reinforced polyester composites. J Appl Polym Sci 64(9):1739–1748. doi:10.1002/(SICI)1097-4628(19970531)64:9<1739::AID-APP10>3.0.CO;2-T

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Sapuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mastura, M.T., Sapuan, S.M., Mansor, M.R. et al. Environmentally conscious hybrid bio-composite material selection for automotive anti-roll bar. Int J Adv Manuf Technol 89, 2203–2219 (2017). https://doi.org/10.1007/s00170-016-9217-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9217-9

Keywords

Navigation