Skip to main content
Log in

Numerical simulation of sheet metal forming: a review

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Numerical simulation is becoming one of the main methods to investigate various engineering problems with sophisticated conditions. A considerable amount of research is conducted on numerical analysis of sheet metal forming process to address different aspects of the problem. Among the numerical simulation methods for sheet metal forming process, finite difference method (FDM) and finite element method (FEM) have been the main methods. In this paper, the progresses in simulation techniques, advantage and disadvantage of numerical methods for simulating sheet metal forming process are discussed based on these numerical methods. Currently, FEM being the main simulation method for sheet metal forming, development in solution strategies and formulation, element selection are further brought into attention. Historical development of anisotropy and yield criteria, which are theoretical foundation for numerical simulation, and their application in simulation software are briefly classified. Formability of sheet metal is presented from the numerical simulation point of view. Numerical investigations on springback are reviewed in terms of simulation techniques and factors influencing springback. Simulation techniques for novel sheet metal forming techniques such as laser forming and incremental sheet forming (ISF) are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Assempour A, Emami MR (2009) Pressure estimation in the hydroforming process of sheet metal pairs with the method of upper bound analysis. J Mater Process Technol 209(5):2270–2276

    Article  Google Scholar 

  2. Rubio EM, Marin M, Domingo R, Sebastian MA (2009) Analysis of plate drawing processes by the upper bound method using theoretical work-hardening materials. Int J Adv Manuf Technol 40(3–4):261–269

    Article  Google Scholar 

  3. Kaftanoglu B, Tekkaya AE (1981) Complete numerical solution of the axisymmetrical deep-drawing problem. J Eng Mater Technol 103(81)

  4. Makinouchi A (1996) Sheet metal forming simulation in industry. J Mater Process Technol 60(1–4):19–26

    Article  Google Scholar 

  5. Makinouchi A, Teodosiu C, Nakagawa T (1998) Advance in FEM simulation and its related technologies in sheet metal forming. CIRP Ann - Manuf Technol 47(2):641–649

    Article  Google Scholar 

  6. Tekkaya AE (2000) State-of-the-art of simulation of sheet metal forming. J Mater Process Technol 103(1):14–22

    Article  Google Scholar 

  7. Tisza M (2004) Numerical modelling and simulation in sheet metal forming. J Mater Process Technol 151(1–3 SPEC. ISS):58–62

    Article  Google Scholar 

  8. Wenner ML (2005) Overview - simulation of sheet metal forming. AIP Conf Proc 778 A:3–7

    Article  Google Scholar 

  9. Ahmed M, Sekhon GS (2005) Finite element simulation of sheet metal forming processes. Def Sci J 55(4):389–401

    Article  Google Scholar 

  10. Kim C, Pavlina EJ, Barlat F (2011) Advances in sheet forming — materials modeling , numerical simulation , and press technologies. J Manuf Sci Eng 133(December 2011):1–12

    Google Scholar 

  11. Banabic D (2010) Sheet metal forming processes: constitutive modelling and numerical simulation. Springer Science ¥& Business Media

  12. Reddy P, Reddy G, Prasad P (2012) A review on finite element simulations in metal forming. Int J Mod Eng Res 2(4):2326–2330

    Google Scholar 

  13. Woo DM (1968) On the complete solution of the deep drwaing problem. Int J Mech Sci 10:83–94

    Article  Google Scholar 

  14. Doege E, Ropers C (1999) Berechnung der Wärmeleitung in dreidimensional geformten Blechen mit der Finite-Differenzen-Methode während eines Umformprozesses. Forsch im Ingenieurwes 65(7):169–177

    Article  Google Scholar 

  15. Tseng AA (1984) A generalized finite difference scheme for convection-dominated metal-forming. 20(June 1983):1885–1900

  16. Wifi A (1976) An incremental complete solution of the stretch-forming and deep-drawing of a circular blank using a hemispherical punch. Int J Mech Sci 18(c):23–31

    Article  MATH  Google Scholar 

  17. Gotoh M, Ishisé F (1978) A finite element analysis of rigid-plastic deformation of the flange in a deep-drawing process based on a fourth-degree yield function. Int J Mech Sci 20(7):423–435

    Article  MATH  Google Scholar 

  18. Wang N-M, Budiansky B (1978) Analysis of sheet metal stamping by a finite-element method. J Appl Mech 45(March 1978):73

    Article  MATH  Google Scholar 

  19. Tang SC, Chu E, Samanta SK (1982) Finite element prediction of the deformed shape of an automotive body panel during preformed stage. Numer Methods Ind Form Process:629–640

  20. Toh CH, Kobayashi S (1983) Finite element process modeling of sheet metal forming of general shapes. In: Fundamentals of Metal Forming Technique — State and Trends. Springer, Berlin Heidelberg, pp 39–56

    Google Scholar 

  21. Benson DJ, Hallquist JO (1986) A simple rigid body algorithm for structural dynamics programs. Int J Numer Methods Eng 22(3):723–749

    Article  MATH  Google Scholar 

  22. Belytschko T, Mullen R (1978) Explicit integration of structural problems. Finite Elem Nonlinear Mech:697–720

  23. Massoni E, Bellet M, Chenot JL, Detraux JM, De Baynast C (1987) A finite element modelling for deep drawing of thin sheet in automotive industry. Springer-Verlag, pp. 719–725

  24. Wang N-M, Wenner ML (1978) Elastic-viscoplastic analyses of simple stretch forming problems. In Mechanics of sheet metal forming. Springer, pp. 367–402

  25. Lee MG, Kim C, Pavlina EJ, Barlat F (2011) Advances in sheet forming—materials modeling, numerical simulation, and press technologies. J Manuf Sci Eng 133(6):061001

    Article  Google Scholar 

  26. Oniate E, Rojek J, Garino CG (1995) NUMISTAMP : a research project for assessment of finite-element models for stamping processes. J Mater Process Tech 50:17–38

    Article  Google Scholar 

  27. Yang DY, Jung DW, Song IS, Yoo DJ, Lee JH (1995) Comparative investigation into implicit, explicit, and iterative implicit/explicit schemes for the simulation of sheet-metal forming processes. J Mater Process Technol 50(1–4):39–53

    Article  Google Scholar 

  28. Wang N-M, Budiansky B (1978) Analysis of sheet metal stamping by a finite-element method. J Appl Mech 45(March 1978):73

    Article  MATH  Google Scholar 

  29. Nakamachi E (1995) Sheet-forming process characterization by static-explicit anisotropic elastic-plastic finite-element simulation. J Mater Process Technol 50(1–4):116–132

    Article  Google Scholar 

  30. Mamalis AG, Manolakos DE, Baldoukas AK (1997) Simulation of sheet metal forming using explicit finite-element techniques: effect of material and forming characteristics part 1. Deep-drawing of cylindrical cups. J Mater Process Technol 72:48–60

    Article  Google Scholar 

  31. Jung DW, Yoo DJ, Yang DY (1995) A dynamic explicit/rigid plastic finite element formulation and its application to sheet metal forming processes. Eng Comput 12(8):707–722

    Article  MATH  Google Scholar 

  32. Jung DW (1998) Study of dynamic explicit analysis in sheet metal forming processes using faster punch velocity and mass scaling scheme. J Mater Eng Perform 7(August):479–490

    Article  Google Scholar 

  33. Carleer BD, Hu J (1996) Closing the Gap between the Workshop and Numerical Simulations in Sheet Metal Forming

    Google Scholar 

  34. Finn MJ, Galbraith PC, Wu L, Hallquist JO, Lum L, Lin T-L (1995) Use of a coupled explicit—implicit solver for calculating spring-back in automotive body panels. J Mater Process Technol 50(1–4):395–409

    Article  Google Scholar 

  35. Micari F, Forcellese A, Fratini L, Gabrielli F, Alberti N (1997) Springback evaluation in fully 3-d sheet metal forming processes. CIRP Ann - Manuf Technol 46(1):167–170

    Article  Google Scholar 

  36. Batoz J-L, Qiao Guo Y, Mercier F (1998) The inverse approach with simple triangular shell elements for large strain predictions of sheet metal forming parts. Eng Comput 15(7):864–892

    Article  MATH  Google Scholar 

  37. Guo YQ, Batoz JL, Naceur H, Bouabdallah S, Mercier F, Barlet O (2000) Recent developments on the analysis and optimum design of sheet metal forming parts using a simplified inverse approach. Comput Struct 78(1–3):133–148

    Article  Google Scholar 

  38. Bostan Shirin M, Assempour A (2014) Some improvements on the unfolding inverse finite element method for simulation of deep drawing process. Int J Adv Manuf Technol 72(1–4):447–456

    Article  Google Scholar 

  39. Lan J, Dong X, Li Z (2005) Inverse finite element approach and its application in sheet metal forming. J Mater Process Technol 170(3):624–631

    Article  Google Scholar 

  40. Kim SH, Kim SH, Huh H (2001) Finite element inverse analysis for the design of intermediate dies in multi-stage deep-drawing processes with large aspect ratio. J Mater Process Technol 113(1–3):779–785

    Article  Google Scholar 

  41. Tang B, Li Y, Lu X (2010) Developments of multistep inverse finite element method and its application in formability prediction of multistage sheet metal forming. J Manuf Sci Eng 132(4):041013

    Article  Google Scholar 

  42. Azizi R (2009) Different implementations of inverse finite element method in sheet metal forming. Mater Des 30(8):2975–2980

    Article  Google Scholar 

  43. Na J, Chen W (2013) One step positive approach for sheet metal forming simulation based on quasi-conjugate-gradient method. Chinese J Mech Eng 26(4):730–736

    Article  MathSciNet  Google Scholar 

  44. Chung W, Kim B, Lee S, Ryu H, Joun M (2014) Finite element simulation of plate or sheet metal forming processes using tetrahedral MINI-elements. J Mech Sci Technol 28(1):237–243

    Article  Google Scholar 

  45. Xu HJ, Liu YQ, Zhang ZB, Du T (2010) Proceedings of the 13th International Conference on Metal Forming. Steel Res Int 81(9):n/a–n/a

  46. Menezes LF, Teodosiu C (2000) Three-dimensional numerical simulation of the deep-drawing process using solid finite elements. J Mater Process Technol 97(1–3):100–106

    Article  Google Scholar 

  47. Papeleux L, Ponthot J-P (2002) Finite element simulation of springback in sheet metal forming. J Mater Process Technol 125–126:785–791

    Article  Google Scholar 

  48. Parente MPL, Fontes Valente RA, Natal Jorge RM, Cardoso RPR, Alves de Sousa RJ (2006) Sheet metal forming simulation using EAS solid-shell finite elements. Finite Elem Anal Des 42(13):1137–1149

    Article  Google Scholar 

  49. Alves de Sousa RJ, Yoon JW, Cardoso RPR, Fontes Valente RA, Grácio JJ (2007) On the use of a reduced enhanced solid-shell (RESS) element for sheet forming simulations. Int J Plast 23(3):490–515

    Article  MATH  Google Scholar 

  50. Lee MC, Chung SH, Jang SM, Joun MS (2009) Three-dimensional simulation of forging using tetrahedral and hexahedral elements. Finite Elem Anal Des 45(11):745–754

    Article  Google Scholar 

  51. Yoon S, Wu C-T, Wang H-P, Chen J-S (2001) Efficient meshfree formulation for metal forming simulations. J Eng Mater Technol 123(4):462

    Article  Google Scholar 

  52. Cueto E, Chinesta F (2015) Meshless methods for the simulation of material forming. Int J Mater Form 8(1):25–43

    Article  Google Scholar 

  53. Yoon S, Chen J-S (2002) Accelerated meshfree method for metal forming simulation. Finite Elem Anal Des 38(10):937–948

    Article  MATH  Google Scholar 

  54. Botkin ME, Guo Y, Wu CT (2004) Coupled FEM/Mesh-Free shear-deformable shells for nonlinear analysis of ahell structures. In: Sixth World Congress on Computational Mechanics in Conjunction with the Second Asian-Pacific Congress

    Google Scholar 

  55. Liu HS, Xing ZW, Yang YY (2012) Simulation of sheet metal forming process using reproducing kernel particle method. Int J Numer Method Biomed Eng 28(1):72–86

    Article  Google Scholar 

  56. Sidibe K, Li G (2012) A meshfree simulation of the draw bending of sheet metal. Int J Sci Eng Res 3(10):1–5

    Google Scholar 

  57. Liu H, Xing Z, Sun Z, Bao J (2011) Adaptive multiple scale meshless simulation on springback analysis in sheet metal forming. Eng Anal Bound Elem 35(3):436–451

    Article  MATH  Google Scholar 

  58. Liu HS, Fu MW (2013) Adaptive reproducing kernel particle method using gradient indicator for elasto-plastic deformation. Eng Anal Bound Elem 37(2):280–292

    Article  MathSciNet  MATH  Google Scholar 

  59. Guo CKPY, Wu CT (2013) A meshfree adaptive procedure for shells in the sheet metal forming applications. Interact Multiscale Mech 6(2):137–156

    Article  Google Scholar 

  60. Society TR, Society R, Sciences P (1948) A theory of the yielding and plastic flow of anisotropic metals. Proc R Soc 193:281–297

    Article  MathSciNet  Google Scholar 

  61. Hill R (1979) Theoretical plasticity of textured aggregates. Math Proc Cambridge Philos Soc 85(01):179

    Article  MathSciNet  MATH  Google Scholar 

  62. Hill R (1990) Constitutive modelling of orthotropic plasticity in sheet metals. J Mech Phys Solids 38(3):405–417

    Article  MathSciNet  MATH  Google Scholar 

  63. Hill R (1993) A user-friendly theory of orthotropic plasticity in sheet metals. Int J Mech Sci 35(1):19–25

    Article  MATH  Google Scholar 

  64. Vial C, Hosford WF, Caddell RM (1983) Yield loci of anisotropic sheet metals. Int J Mech Sci 25(12):899–915

    Article  Google Scholar 

  65. Barlat F, Richmond O (1987) Prediction of tricomponent plane stress yield surfaces and associated flow and failure behavior of strongly textured f.c.c. polycrystalline sheets. Mater Sci Eng 95:15–29

    Article  Google Scholar 

  66. Barlat F, Lege DJ, Brem JC (1991) A six-component yield function for anisotropic materials. Int J Plast 7(7):693–712

    Article  Google Scholar 

  67. Barlat F, Becker RC, Hayashida Y, Maeda Y, Yanagawa M, Chung K, Brem JC, Lege DJ, Matsui K, Murtha SJ, Hattori S (1997) Yielding description for solution strengthened aluminum alloys. Int J Plast 13(4):385–401

    Article  Google Scholar 

  68. Barlat F, Maeda Y, Chung K, Yanagawa M, Brem JC, Hayashida Y, Lege DJ, Matsui K, Murtha SJ, Hattori S, Becker RC, Makosey S (1997) Yield function development for aluminum alloy sheets. J Mech Phys Solids 45(11–12):1727–1763

    Article  Google Scholar 

  69. Karafillis AP, Boyce MC (1993) A general anisotropic yield criterion using bounds and a transformation weighting tensor. J Mech Phys Solids 41(12):1859–1886

    Article  MATH  Google Scholar 

  70. Budiansky B (1984) Anisotropic plasticity of plane-isotropic sheets. Mech Mater Behav: 15

  71. Gotoh M (1977) A theory of plastic anisotropy based on yield function of fourth order (plane stress state)—II. Int J Mech Sci 19(9):513–520

    Article  MATH  Google Scholar 

  72. Barlat F, Brem JC, Yoon JW, Chung K, Dick RE, Lege DJ, Pourboghrat F, Choi SH, Chu E (2003) Plane stress yield function for aluminum alloy sheets - part 1: theory. Int J Plast 19(9):1297–1319

    Article  MATH  Google Scholar 

  73. Banabic D, Balan T, Comsa DS (2000) Orthotropic sheet metals under plane-stress conditions. no. 1

  74. Cazacu O, Barlat F (2001) Generalization of Druckers’s yield criterion to orthotropy. Mathimacis Mech Solids 6:613–630

    Article  MATH  Google Scholar 

  75. Carleer BD, Meinders T, Vegter H (1997) “A planar anisotropic yield function based on multi axial stress states in finite elements”, in COMPLAS V, 5th International Conference on Computational Plasticity., no. 1

    Google Scholar 

  76. Vegter H, Van Den Boogaard AH (2006) A plane stress yield function for anisotropic sheet material by interpolation of biaxial stress states. Int J Plast 22(3):557–580

    Article  MATH  Google Scholar 

  77. Hu W (2003) Characterized behaviors and corresponding yield criterion of anisotropic sheet metals. Mater Sci Eng A 345(1–2):139–144

    Article  Google Scholar 

  78. Comsa DS, Banabic D (2007) Numerical simulation of sheet metal forming processes using a new yield criterion. Key Eng Mater 344(November):833–840

    Article  Google Scholar 

  79. Soare SC (2007) On the use of homogeneous polynomials to develop anisotropic yield functions with application to sheet forming. University of Florida, Gainesville

    Google Scholar 

  80. Wang (2005) Constitutive modeling of orthotropic plasticity in sheet metals. Priv Commun

  81. Banabic D, Aretz H, Comsa DS, Paraianu L (2005) An improved analytical description of orthotropy in metallic sheets. Int J Plast 21(3):493–512

    Article  MATH  Google Scholar 

  82. Comsa D, Banabic D (2008) Plane-stress yield criterion for highly-anisotropic sheet metals. Numisheet 2008 0(1):43–48

    Google Scholar 

  83. Soare S, Barlat F (2010) Convex polynomial yield functions. J Mech Phys Solids 58(11):1804–1818

    Article  MathSciNet  MATH  Google Scholar 

  84. Desmorat R, Marull R (2011) Non-quadratic Kelvin modes based plasticity criteria for anisotropic materials. Int J Plast 27(3):328–351

    Article  MATH  Google Scholar 

  85. Taherizadeh A, Green DE, Yoon JW (2011) Evaluation of advanced anisotropic models with mixed hardening for general associated and non-associated flow metal plasticity. Int J Plast 27(11):1781–1802

    Article  MATH  Google Scholar 

  86. Gawad J, Banabic D, Van Bael A, Comsa DS, Gologanu M, Eyckens P, Van Houtte P, Roose D (2014) An evolving plane stress yield criterion based on crystal plasticity virtual experiments. Int J Plast 75:141–169

    Article  Google Scholar 

  87. Nielson KB (1997) Sheet Metal Forming Simulation Using Explicit Finite Element Methods

    Google Scholar 

  88. Liu C, Huang Y, Stout M (1997) On the asymmetric yield surface of plastically orthotropic materials: a phenomenological study. Acta Mater 45(6):2397–2406

    Article  Google Scholar 

  89. Cazacu O, Barlat F (2004) A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals. Int J Plast 20(11 SPEC. ISS):2027–2045

    Article  MATH  Google Scholar 

  90. Soare S, Yoon JW, Cazacu O (2007) On using homogeneous polynomials to design anisotropic yield functions with tension/compression symmetry/assymetry. AIP Conf Proc 908(May):607–612

    Article  Google Scholar 

  91. Plunkett B, Cazacu O, Barlat F (2008) Orthotropic yield criteria for description of the anisotropy in tension and compression of sheet metals. Int J Plast 24(5):847–866

    Article  MATH  Google Scholar 

  92. Yoon JW, Lou Y, Yoon J, Glazoff MV (2014) Asymmetric yield function based on the stress invariants for pressure sensitive metals. Int J Plast 56:184–202

    Article  Google Scholar 

  93. Soare SC, Benzerga AA (2016) On the modeling of asymmetric yield functions. Int J Solids Struct 80:486–500

    Article  Google Scholar 

  94. Emmens WC (2011) Formability: A Review of Parameters and Processes that Control, Limit or Enhance the Formability of Sheet Metal, vol 7. Springer, Heidelberg Dordrecht London New York

    Book  Google Scholar 

  95. Goodwin GM (1968) Application of strain analysis to sheet metal forming problems in the press shop

    Book  Google Scholar 

  96. Keeler SP (1968) Circular grid system—a valuable aid for evaluating sheet metal formability. SAE Tech Pap 680092

  97. Havranek J (1977) The effect of mechanical properties of sheet steels on the wrinkling behaviour during deep drawing of conical shells. J Mech Work Technol 1:115–129

    Article  Google Scholar 

  98. Arrieux R (1981) Contribution to the determination of forming limit curves of titanium and aluminum. Proposal of an intrinsic criterion. PhD Thesis, INSA, Lyon (in French)

  99. Manoj Simha CH, Gholipour J, Bardelcik A, Worswick MJ (2007) Prediction of necking in tubular hydroforming using an extended stress-based forming limit curve. J Eng Mater Technol 129(1):36

    Article  Google Scholar 

  100. Janssens K, Lambert F, Vanrostenberghe S, Vermeulen M (2001) Statistical evaluation of the uncertainty of experimentally characterised forming limits of sheet steel. J Mater Process Technol 112(2–3):174–184

    Article  Google Scholar 

  101. Bleck W, Deng Z, Papamantellos K, Gusek CO (1998) A comparative study of the forming-limit diagram models for sheet steels. J Mater Process Technol 83(1–3):223–230

    Article  Google Scholar 

  102. Hu P, Ma N, Liu L-Z, Zhu Y (2013) Thories, methods and numerical technologies of sheet metal cold and hot forming. Springer

  103. Zimniak Z (2000) Implementation of the forming limit stress diagram in FEM simulations. J Mater Process Technol 106:261–266

    Article  Google Scholar 

  104. Berstad T, Lademo OG, Pedersen KO, Hopperstad OS (2004) Formability modeling with LS-DYNA. 8th Int LSDyna Users Conf 2(7465):6–53–64

    Google Scholar 

  105. Samuel M (2004) Numerical and experimental investigations of forming limit diagrams in metal sheets. J Mater Process Technol 153–154:424–431

    Article  Google Scholar 

  106. Duan X, Jain M, Wilkinson DS (2006) Development of a heterogeneous microstructurally based finite element model for the prediction of forming limit diagram for sheet material. Metall Mater Trans A Phys Metall Mater Sci 37(12):3489–3501

    Article  Google Scholar 

  107. Takuda H, Ozawa K, Hama T, Yoshida T, Nitta J (2009) Forming limit prediction in bore expansion by combination of finite element simulation and ductile fracture criterion. Mater Trans 50(8):1930–1934

    Article  Google Scholar 

  108. Fyllingen Ø, Hopperstad OSS, Lademo O-GG, Langseth M (2009) Estimation of forming limit diagrams by the use of the finite element method and Monte Carlo simulation. Comput Struct 87(1–2):128–139

    Article  Google Scholar 

  109. Hajian M, Assempour A (2014) Experimental and numerical determination of forming limit diagram for 1010 steel sheet: a crystal plasticity approach. Int J Adv Manuf Technol 76(9–12):1757–1767

    Google Scholar 

  110. Hajian M, Assempour A, Akbarzadeh A (2015) Experimental investigation and crystal plasticity--based prediction of AA1050 sheet formability. Proc Inst Mech Eng Part B J Eng Manuf: 0954405415597843

  111. Baseri H, Rahmani B, Bakhshi-Jooybari M (2012) Predictive models of the spring-back in the bending process. Appl Artif Intell 26(9):862–877

    Article  Google Scholar 

  112. Wagoner RH (2004) Sheet springback. Contin Scale Simul Eng Mater Fundam Appl:777–794

  113. Wagoner RH, Li M (2005) Advances in springback. AIP Conf Proc 778 A:209–214

    Article  Google Scholar 

  114. Wagoner RH, Lim H, Lee MG (2013) Advanced issues in springback. Int J Plast 45:3–20

    Article  Google Scholar 

  115. Tekiner Z (2004) An experimental study on the examination of springback of sheet metals with several thicknesses and properties in bending dies. J Mater Process Technol 145(1):109–117

    Article  Google Scholar 

  116. Moon YH, Kang SS, Cho JR, Kim TG (2003) Effect of tool temperature on the reduction of the springback of aluminum sheets. J Mater Process Technol 132(1–3):365–368

    Article  Google Scholar 

  117. Gomes C, Onipede O, Lovell M (2005) Investigation of springback in high strength anisotropic steels. J Mater Process Technol 159(1):91–98

    Article  Google Scholar 

  118. Li KP, Carden WP, Wagoner RH (2002) Simulation of springback. Int J Mech Sci 44(1):103–122

    Article  MATH  Google Scholar 

  119. Nakamachi E, Honda T, Kuramae H, Morita Y, Ohata T, Morimoto H (2014) Two-scale finite element analyses for bendability and springback evaluation based on crystallographic homogenization method. Int J Mech Sci 80:109–121

    Article  Google Scholar 

  120. Baseri H, Rahmani B, Bakhshi-Jooybari M (2011) Selection of bending parameters for minimal spring-back using an ANFIS model and simulated annealing algorithm. J Manuf Sci Eng 133(3):031010

    Article  Google Scholar 

  121. Jamli MR, Ariffin AK, Wahab DA (2015) Incorporating feedforward neural network within finite element analysis for L-bending springback prediction. Expert Syst Appl 42(5):2604–2614

    Article  Google Scholar 

  122. Xu WL, Ma CH, Li CH, Feng WJ (2004) Sensitive factors in springback simulation for sheet metal forming. J Mater Process Technol 151(1–3 SPEC. ISS):217–222

    Article  Google Scholar 

  123. Ank R, Barauskas R (2006) Finite element investigation on parameters influencing the springback during sheet metal forming. 5(5):57–62

  124. Geiger M, Vollertsen F (1993) The mechanisms of laser forming. CIRP Ann - Manuf Technol 42(1):301–304

    Article  Google Scholar 

  125. Shen H, Vollertsen F (2009) Modelling of laser forming - a review. Comput Mater Sci 46(4):834–840

    Article  Google Scholar 

  126. Kyrsanidi AK, Kermanidis TB, Pantelakis SG (2000) An analytical model for the prediction of distortions caused by the laser forming process. J Mater Process Technol 104(1–2):94–102

    Article  Google Scholar 

  127. Cheng PJ, Lin SC (2001) Analytical model to estimate angle formed by laser. J Mater Process Technol 108(3):314–319

    Article  Google Scholar 

  128. Shen H, Shi Y, Yao Z, Hu J (2006) An analytical model for estimating deformation in laser forming. Comput Mater Sci 37(4):593–598

    Article  Google Scholar 

  129. Lambiase F (2012) An analytical model for evaluation of bending angle in laser forming of metal sheets. J Mater Eng Perform 21(10):2044–2052

    Article  Google Scholar 

  130. Eideh A, Dixit US, Echempati R (2014) A simple analytical model of laser bending. no. Aimtdr: 1–7

  131. Volletsen LWM, Geiger M (1993) FDM-and FEM simulation of laser forming: a comparative study. In Proceedings of the fourth international conference on technology of plasticity. 1793–1798

  132. Hu Z, Labudovic M, Wang H, Kovacevic R (2001) Computer simulation and experimental investigation of sheet metal bending using laser beam scanning. Int J Mach Tools Manuf 41(4):589–607

    Article  Google Scholar 

  133. Shichun W, Zhong J (2002) FEM simulation of the deformation field during the laser forming of sheet metal. J Mater Process Technol 121:269–272

    Article  Google Scholar 

  134. Zhang L, Michaleris P (2004) Investigation of Lagrangian and Eulerian finite element methods for modeling the laser forming process. Finite Elem Anal Des 40(4):383–405

    Article  Google Scholar 

  135. Zhang P, Guo B, Bin Shan D, Ji Z (2007) FE simulation of laser curve bending of sheet metals. J Mater Process Technol 184(1–3):157–162

    Article  Google Scholar 

  136. Griffiths J, Edwardson SP, Dearden G, Watkins KG (2010) Finite element modelling of laser forming at macro and micro scales. Phys Procedia 5(PART 2):371–380

    Article  Google Scholar 

  137. Hu J, Dang D, Shen H, Zhang Z (2012) A finite element model using multi-layered shell element in laser forming. Opt Laser Technol 44(4):1148–1155

    Article  Google Scholar 

  138. Maji K, Shukla R, Nath AK, Pratihar DK (2013) Finite element analysis and experimental investigations on laser bending of AISI304 stainless steel sheet. Procedia Eng 64:528–535

    Article  Google Scholar 

  139. Chakraborty SS, Maji K, Racherla V, Nath AK (2015) Investigation on laser forming of stainless steel sheets under coupling mechanism. Opt Laser Technol 71:29–44

    Article  Google Scholar 

  140. Gish H (2000) Prediction of the laser sheet bending using neural network. IEEE Int Symp Circ Syst 768:289–292

    Google Scholar 

  141. Wang X, Xu W, Chen H, Wang J (2008) Parameter prediction in laser bending of aluminum alloy sheet. 3(3):293–298

  142. Du Y, Wang X, Silvanus J (2011) Improved BP network to predict bending angle in the laser bending process for sheet metal. Proc - 2010 Int Conf Intell Syst Des Eng Appl ISDEA 2010 1:839–843

    Google Scholar 

  143. Guarino S, Ucciardello N, Tagliaferri V (2007) An application of neural network solutions to modeling of diode laser assisted forming process of AA6082 thin sheets. Key Eng Mater 344:325–332

    Article  Google Scholar 

  144. Nguyen TT, Yang YS, Bae KY, Choi SN (2009) Prediction of deformations of steel plate by artificial neural network in forming process with induction heating. J Mech Sci Technol 23(4):1211–1221

    Article  Google Scholar 

  145. Gisario A, Barletta M, Conti C, Guarino S (2011) Springback control in sheet metal bending by laser-assisted bending: experimental analysis, empirical and neural network modelling. Opt Lasers Eng 49(12):1372–1383

    Article  Google Scholar 

  146. Kuo HC, Wu LJ (2002) Automation of heat bending in shipbuilding. Comput Ind 48(2):127–142

    Article  Google Scholar 

  147. Chen D-J, Xiang Y-B, Wu S-C, Li M-Q (2002) Application of fuzzy neural network to laser bending process of sheet metal. Mater Sci Technol 18(6):677–680

    Article  Google Scholar 

  148. Shen H, Shi YJ, Yao ZQ, Hu J (2006) Fuzzy logic model for bending angle in laser forming. 22(8):981–986

  149. Maji K, Pratihar DK, Nath AK (2013) Analysis and synthesis of laser forming process using neural networks and neuro-fuzzy inference system. Soft Comput 17(5):849–865

    Article  Google Scholar 

  150. Liu C, Yao YL (2002) Optimal and robust design of the laser forming process. 4(2):52–66

  151. Cheng JG, Yao YL (2004) Process synthesis of laser forming by genetic algorithm. Int J Mach Tools Manuf 44(15):1619–1628

    Article  Google Scholar 

  152. Carlone P, Palazzo GS, Pasquino R (2008) Inverse analysis of the laser forming process by computational modelling and methods. Comput Math with Appl 55(9):2018–2032

    Article  MathSciNet  MATH  Google Scholar 

  153. Shichun W, Jinsong Z (2001) An experimental study of laser bending for sheet metals. J Mater Process Technol 110(2):160–163

    Article  Google Scholar 

  154. Ji Z, Wu S (1998) FEM simulation of the temperature field during the laser forming of sheet metal. J Mater Process Technol 74(1–3):89–95

    Article  Google Scholar 

  155. Hoseinpour Gollo M, Mahdavian SM, Moslemi Naeini H (2011) Statistical analysis of parameter effects on bending angle in laser forming process by pulsed Nd:YAG laser. Opt Laser Technol 43(3):475–482

    Article  Google Scholar 

  156. Kheloufi K, Amara EH (2008) Numerical simulation of steel plate bending process using thermal mechanical analysis. Laser Plasma Appl Mater Sci First Int Conf Laser Plasma Appl Mater Sci 1047(1)

  157. Venkadeshwaran K, Das S, Misra D (2010) Finite element simulation of 3-D laser forming by discrete section circle line heating. Int J Eng Sci Technol 2(4)

  158. Shi YJ, Shen H, Yao ZQ, Hu J (2006) Numerical investigation of straight-line laser forming under the temperature gradient mechanism. Acta Metall Sin (English Lett 19(2):144–150

    Article  Google Scholar 

  159. Yu G, Masubuchi K, Maekawa T, Patrikalakis NM (2001) FEM simulation of laser forming of metal plates. J Manuf Sci Eng 123(3):405

    Article  Google Scholar 

  160. Zohoor M, Zahrani EG (2012) Experimental and numerical analysis of bending angle variation and longitudinal distortion in laser forming process. Sci Iran 19(4):1074–1080

    Article  Google Scholar 

  161. Gollo MH, Naeini HM, Arab NBM (2011) Experimental and numerical investigation on laser bending process. 1(1):45–52

  162. Pitz I, Otto A, Schmidt M (2010) Simulation of the laser beam forming process with Moving Meshes for large aluminium plates. Phys Procedia 5(2):363–369

    Article  Google Scholar 

  163. Che Jamil MS, Sheikh MA, Li L (2011) A study of the effect of laser beam geometries on laser bending of sheet metal by buckling mechanism. Opt Laser Technol 43(1):183–193

    Article  Google Scholar 

  164. Paramasivan K, Das S, Misra D (2014) A study on the effect of rectangular cut out on laser forming of AISI 304 plates. Int J Adv Manuf Technol 72(9–12):1513–1525

    Article  Google Scholar 

  165. Guan Y, Sun S, Zhao G, Luan Y (2005) Influence of material properties on the laser-forming process of sheet metals. J Mater Process Technol 167(1):124–131

    Article  Google Scholar 

  166. Jamil MSC, Sheikh MA, Li L (2011) A numerical study of the temperature gradient mechanism in laser forming using different laser beam geometries. 22(0):413–428

  167. Shi Y, Yao Z, Shen H, Hu J (2006) Research on the mechanisms of laser forming for the metal plate. Int J Mach Tools Manuf 46(12–13):1689–1697

    Article  Google Scholar 

  168. Leszak E (1967) Apparatus and process for incremental dieless forming

    Google Scholar 

  169. Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J (2005) Asymmetric single point incremental forming of sheet metal. CIRP Ann - Manuf Technol 54(2):88–114

    Article  Google Scholar 

  170. Emmens WC, Sebastiani G, van den Boogaard AH (2010) The technology of Incremental Sheet Forming—a brief review of the history. J Mater Process Technol 210(8):981–997

    Article  Google Scholar 

  171. Kumar Y, Kumar S (2015) Increamental sheet froming (ISF). Adv Meterial Form Join:29–46

  172. Iseki H (2001) An approximate deformation analysis and FEM analysis for the incremental bulging of sheet metal using a spherical roller. J Mater Process Technol 111(1–3):150–154

    Article  Google Scholar 

  173. Shim MS, Park JJ (2001) The formability of aluminum sheet in incremental forming. J Mater Process Technol 113(1–3):654–658

    Article  Google Scholar 

  174. Hirtl G, Ames J, Bambach M, Kopp R (2004) Forming strategies and process modelling for cnc incremental sheet forming. CIRP Ann Technol 53:203–206

    Article  Google Scholar 

  175. Sebastiani G, Brosius A, Tekkaya AE, Homberg W, Kleiner M (2007) Decoupled simulation method for incremental sheet metal forming. Proc 9th Int Conf Numer Methods Ind Form Process 908(1):1501–1506

    Google Scholar 

  176. Yamashita M, Gotoh M, Atsumi S-Y (2008) Numerical simulation of incremental forming of sheet metal. J Mater Process Technol 199(1–3):163–172

    Article  Google Scholar 

  177. Lequesne C, Henrard C, Bouffioux C (2008) Adaptive remeshing for incremental forming simulation. Numer Simul 32:4–8

    Google Scholar 

  178. Hadoush A, van den Boogaard AH (2009) Substructuring in the implicit simulation of single point incremental sheet forming. Int J Mater Form 2(3):181–189

    Article  Google Scholar 

  179. Ben Ayed L, Robert C, Delamézière A, Nouari M, Batoz JL (2014) Simplified numerical approach for incremental sheet metal forming process. Eng Struct 62–63:75–86

    Article  Google Scholar 

  180. Zhang MH, Lu B, Chen J, Long H, Ou H (2015) Selective element fission approach for fast FEM simulation of incremental sheet forming based on dual-mesh system. Int J Adv Manuf Technol 78(5–8):1147–1160

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ala Qattawi.

Additional information

Muhammad Ali Ablat is also known as Abulaiti Maimaitiaili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ablat, M.A., Qattawi, A. Numerical simulation of sheet metal forming: a review. Int J Adv Manuf Technol 89, 1235–1250 (2017). https://doi.org/10.1007/s00170-016-9103-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9103-5

Keywords

Navigation