Skip to main content

Advertisement

Log in

A novel numerical predicting method of electric discharge machining process based on specific discharge energy

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Performance prediction of the electric discharge machining (EDM) process is the key to the overall study of EDM. Two approaches currently exist for predicting performance; one is an experimental approach and is dependent upon recurrent experiments while the other is a numerical approach with typically poor accuracy. A novel numerical method is proposed in this study to predict different materials’ EDM process performance under various conditions in an effective and economic way. This method is based on the specific discharge energy (SDE), a significant factor characterizing performance of materials in the EDM process. The materials with similar SDE exhibit similar performance under same conditions and materials with lower SDE tend to be removed quicker but with diminished performance. A numerical model of the EDM process considering the parameters-variant proportion of the energy distribution and equivalent temperature is established to compute the value of SDE and the model is compared with the previous models. The method is tested utilizing three different materials and is proved to be effective for predicting EDM performance, ultimately providing a convenient and accurate implication to guide manufacturing of various materials, especially new and/or expensive materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C P :

specific heat capacity (Jk g −1K −1)

C P e f f :

effective specific heat capacity (Jk g −1K −1)

EDM:

electrical discharge machining

f c :

factor of heat going to the cathode

H:

depth of the crater (μ m)

h:

convection coefficient (Wm −2K −1)

I:

discharge current (A)

K:

rising slope of the electrical current(A/μ s)

K t :

thermal conductivity (Wm −1K −1)

L H :

latent heat (k Jk g −1 )

MRR:

material removal rate (m m 3/m i n)

M:

number of sampling point on x-axis

N:

number of sampling point on y-axis

Q:

heat flux outside the discharge channel of the convection (W/m 2)

q(r):

heat flux applied on the workpiece (W/m 2)

Ra:

surface roughness of one dimension profile (μ m)

R a t h :

theoretical surface roughness (μ m)

R c :

radius of the crater (μ m)

R P :

spark radius at workpiece surface (μ m)

SDE:

the specific discharge energy (J/m m 3)

S a :

surface roughness of the area (μ m)

T:

temperature (K)

t:

time(μ s)

T e q :

equivalent temperature (K)

T o f f :

pulse-off time (μ s)

T o n :

pulse duration (μ s)

U:

discharge voltage (V)

V t h :

theoretical crater volume (μ m 3)

WEDM:

Wire-cut Electric Discharge Machining

Z:

distance from the surface pointing to the criterion line(μ m)

ρ :

workpiece density (k g/m 3)

References

  1. Izquierdo B, Sanchez JA, Plaza S, Pombo I, Ortega N (2009) A numerical model of the EDM process considering the effect of multiple discharges. Int J Mach Tools Manuf 49(3):220–229

    Article  Google Scholar 

  2. Rebelo JC, Dias AM, Kremer D, Lebrun JL (1998) Influence of EDM pulse energy on the surface integrity of martensitic steels. J Mater Process Technol 84(1):90–96

    Article  Google Scholar 

  3. Lin YC, Hwang LR, Cheng CH, Su PL (2008) Effects of electrical discharge energy on machining performance and bending strength of cemented tungsten carbides. J Mater Process Technol 206(1):491–499

    Article  Google Scholar 

  4. Nikalje AM, Kumar A, Srinadh KVS (2013) Influence of parameters and optimization of EDM performance measures on MDN 300 steel using Taguchi method. Int J Adv Manuf Technol 69(1–4):41–49. doi:10.1007/s00170-013-5008-8

    Article  Google Scholar 

  5. Azhiri RB, Teimouri R, Baboly MG, Leseman Z (2014) Application of Taguchi, ANFIS and grey relational analysis for studying, modeling and optimization of wire EDM process while using gaseous media. Int J Adv Manuf Technol 71(1–4):279–295

    Article  Google Scholar 

  6. Singh PN, Raghukandan K, Pai BC (2004) Optimization by Grey relational analysis of EDM parameters on machining Al10%SiCP composites. J Mater Process Technol 155–156:1658–1661. doi:10.1016/j.jmatprotec.2004.04.322

    Article  Google Scholar 

  7. Wang CC, Chow HM, Yang LD, Lu CT (2009) Recast layer removal after electrical discharge machining via Taguchi analysis: a feasibility study. J Mater Process Technol 209(8):4134–4140

    Article  Google Scholar 

  8. Zhang G, Guo J, Ming W, Huang Y, Shao X, Zhang Z (2014) Study of the machining process of nano-electrical discharge machining based on combined atomistic-continuum modeling method. Appl Surf Sci 290:359–367

    Article  Google Scholar 

  9. Rao TB, Krishna AG (2014) Selection of optimal process parameters in WEDM while machining Al7075/SiCp metal matrix composites. Int J Adv Manuf Technol 73(1–4):299–314. doi:10.1007/s00170-014-5780-0

    Article  Google Scholar 

  10. Suganthi XH, Natarajan U, Sathiyamurthy S, Chidambaram K (2013) Prediction of quality responses in micro-EDM process using an adaptive neuro-fuzzy inference system (ANFIS) model. Int J Adv Manuf Technol 68 (1–4):339–347

    Article  Google Scholar 

  11. Manna A, Bhattacharyya B (2006) Taguchi and Gauss elimination method: a dual response approach for parametric optimization of CNC wire cut EDM of PRAlSiCMMC. Int J Adv Manuf Technol 28(1–2):67–75

    Article  Google Scholar 

  12. Huang Y, Ming W, Guo J, Zhang Z, Liu G, Li M, Zhang G (2013) Optimization of cutting conditions of YG15 on rough and finish cutting in WEDM based on statistical analyses. Int J Adv Manuf Technol 69(5–8):993–1008

    Article  Google Scholar 

  13. El-Taweel T (2009) Multi-response optimization of EDM with AlCCuCSiCTiC P/M composite electrode. Int J Adv Manuf Technol 44(1–2):100–113

    Article  Google Scholar 

  14. Ming W, Zhang Z, Zhang G, Huang Y, Guo J, Chen Y (2014) Multi-objective optimization of 3D-surface topography of machining YG15 in WEDM. Mater Manuf Process 29(5):514–525

    Article  Google Scholar 

  15. Zhang G, Zhang Z, Ming W, Guo J, Huang Y, Shao X (2014) The multi-objective optimization of medium-speed WEDM process parameters for machining SKD11 steel by the hybrid method of RSM and NSGA-II. Int J Adv Manuf Technol 70(9–12):2097–2109

    Article  Google Scholar 

  16. Mahapatra S, Patnaik A (2007) Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method. Int J Adv Manuf Technol 34(9–10):911–925

    Article  Google Scholar 

  17. Schulze HP, Herms R, Juhr H, Schaetzing W, Wollenberg G (2004) Comparison of measured and simulated crater morphology for EDM. J Mater Process Technol 149(1–3):316–322. doi:10.1016/j.jmatprotec.2004.02.016

    Article  Google Scholar 

  18. Bhattacharyya B, Gangopadhyay S, Sarkar BR (2007) Modelling and analysis of EDMED job surface integrity. J Mater Process Technol 189(1–3):169–177. doi:10.1016/j.jmatprotec.2007.01.018

    Article  Google Scholar 

  19. Caydas U, Hascalik A (2007) Modeling and analysis of electrode wear and white layer thickness in die-sinking EDM process through response surface methodology. Int J Adv Manuf Technol 38(11–12):1148–1156. doi:10.1007/s00170-007-1162-1

    Google Scholar 

  20. Izquierdo B, Sanchez JA, Ortega N, Plaza S, Pombo I (2011) Insight into fundamental aspects of the EDM process using multidischarge numerical simulation. Int J Adv Manuf Technol 52(1–4):195–206

    Article  Google Scholar 

  21. DiBitonto DD, Eubank PT, Patel MR, Barrufet MA (1989) Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model. J Appl Phys 66(9):4095–4103

    Article  Google Scholar 

  22. Shabgard M, Ahmadi R, Seyedzavvar M, Oliaei SNB (2013) Mathematical and numerical modeling of the effect of input-parameters on the flushing efficiency of plasma channel in EDM process. Int J Mach Tools Manuf 65:79–87

    Article  Google Scholar 

  23. Shabgard M, Oliaei SNB, Seyedzavvar M, Najadebrahimi A (2011) Experimental investigation and 3D finite element prediction of the white layer thickness, heat affected zone, and surface roughness in EDM process. J Mech Sci Technol 25(12):3173–3183

    Article  Google Scholar 

  24. Yeo SH, Kurnia W, Tan PC (2008) Critical assessment and numerical comparison of electro-thermal models in EDM. J Mater Process Technol 203(1–3):241–251. doi:10.1016/j.jmatprotec.2007.10.026

    Article  Google Scholar 

  25. Joshi SN, Pande SS (2010) Thermo-physical modeling of die-sinking EDM process. J Manuf Process 12 (1):45–56. doi:10.1016/j.jmapro.2010.02.001

    Article  Google Scholar 

  26. Ming W, Zhang G, Li H, Guo J, Zhang Z, Huang Y, Chen Z (2014) A hybrid process model for EDM based on finite-element method and Gaussian process regression. Int J Adv Manuf Technol 74(9–12):1197–1211

    Article  Google Scholar 

  27. Liao YS, Yu YP (2004) Study of specific discharge energy in WEDM and its application. Int J Mach Tools Manuf 44(12–13):1373–1380. doi:10.1016/j.ijmachtools.2004.04.008

    Article  Google Scholar 

  28. Liao Y-S, Chuang T-J, Yu Y-P (2013) Study of machining parameters optimization for different materials in WEDM. Int J Adv Manuf Technol 70(9–12):2051–2058. doi:10.1007/s00170-013-5458-z

    Google Scholar 

  29. Giridharan A, Samuel G (2014) Modeling and analysis of crater formation during wire electrical discharge turning (WEDT) process. Int J Adv Manuf Technol:1–19

  30. Marafona J, Chousal J (2006) A finite element model of EDM based on the Joule effect. Int J Mach Tools Manuf 46(6):595–602

    Article  Google Scholar 

  31. Singh H (2012) Experimental study of distribution of energy during EDM process for utilization in thermal models. Int J Heat Mass Transfer 55(19–20):5053–5064. doi:10.1016/j.ijheatmasstransfer.2012.05.004

    Article  Google Scholar 

  32. Salonitis K, Stournaras A, Stavropoulos P, Chryssolouris G (2009) Thermal modeling of the material removal rate and surface roughness for die-sinking EDM. Int J Adv Manuf Technol 40(3–4):316–323

    Article  Google Scholar 

  33. Van Dijck F, Dutre W (1974) Heat conduction model for the calculation of the volume of molten metal in electric discharges. J Phys D: Appl Phys 7(6):899

    Article  Google Scholar 

  34. Ikai T, Hashigushi K (1995) Heat input for crater formation in EDM. In: Proceedings of international symposium for electro-machining-ISEM XI, EPFL

  35. Kalajahi MH, Ahmadi SR, Oliaei SNB (2013) Experimental and finite element analysis of EDM process and investigation of material removal rate by response surface methodology. Int J Adv Manuf Technol 69(1–4):687–704

    Article  Google Scholar 

  36. Shankar P, Jain V, Sundararajan T (1997) Analysis of spark profiles during EDM process. Mach Sci Technol 1(2):195–217

    Article  Google Scholar 

  37. Joshi S, Pande S (2009) Development of an intelligent process model for EDM. Int J Adv Manuf Technol 45(3–4):300–317

    Article  Google Scholar 

  38. Zhang Z, Ming W, Huang H, Chen Z, Xu Z, Huang Y, Zhang G (2015) Optimization of process parameters on surface integrity in wire electrical discharge machining of tungsten tool YG15. Int J Adv Manuf Technol 81(5–8):1303–1317

    Article  Google Scholar 

  39. Kuppan P, Rajadurai A, Narayanan S (2008) Influence of EDM process parameters in deep hole drilling of Inconel 718. Int J Adv Manuf Technol 38(1–2):74–84

    Article  Google Scholar 

  40. Newton TR, Melkote SN, Watkins TR, Trejo RM, Reister L (2009) Investigation of the effect of process parameters on the formation and characteristics of recast layer in wire-EDM of Inconel 718. Mater Sci Eng: A 513:208–215

    Article  Google Scholar 

  41. Yilmaz O, Okka MA (2010) Effect of single and multi-channel electrodes application on EDM fast hole drilling performance. Int J Adv Manuf Technol 51(1–4):185–194

    Article  Google Scholar 

  42. Khan AA (2008) Electrode wear and material removal rate during EDM of aluminum and mild steel using copper and brass electrodes. Int J Adv Manuf Technol 39(5–6):482–487

    Article  Google Scholar 

  43. Han F, Jiang J, Yu D (2007) Influence of discharge current on machined surfaces by thermoanalysis in finish cut of wedm. Int J Mach Tools Manuf 47(47):1187–1196

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Zhang, Z., Ming, W. et al. A novel numerical predicting method of electric discharge machining process based on specific discharge energy. Int J Adv Manuf Technol 88, 409–424 (2017). https://doi.org/10.1007/s00170-016-8688-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8688-z

Keywords

Navigation