Skip to main content
Log in

Experimental and numerical studies on the effect of deep rolling on bending fretting fatigue resistance of Al7075

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this work, the effect of deep rolling on bending fretting fatigue resistance of Al7075 is investigated. Rotary bending fretting fatigue tests are conducted on a Moore rotary bending apparatus. The effects of various parameters of deep rolling such as rolling ball diameter, rolling depth, rotational speed of specimen, feed rate, and rolling pass number are investigated by experimental and numerical simulations. The residual stress distribution due to rolling is determined using Abaqus finite element code. In order to consider the real material characteristics such as Bauschinger effect and cyclic kinematic hardening behavior, the Chaboche nonlinear kinematic hardening model is used in the numerical simulations. Fractography of specimens after failure is accomplished using optical microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hills DA (1994) Mechanics of fretting fatigue. Wear 175:107–113

    Article  Google Scholar 

  2. Nowell D, Dini D, Hills D (2006) Recent developments in the understanding of fretting fatigue. Eng Fract Mech 73:207–222

    Article  Google Scholar 

  3. Nakazawa K, Sumita M, Maruyama N (1994) Effect of relative slip amplitude on fretting fatigue of high strength steel. Fatigue Fract Eng Mater Struct 17:751–759

    Article  Google Scholar 

  4. Pape J, Neu R (1999) Influence of contact configuration in fretting fatigue testing. Wear 225:1205–1214

    Article  Google Scholar 

  5. Husheng G, Haicheng G, Huijiu Z (1991) The effect of hardness on the fretting fatigue of alloy steels. Fatigue Fract Eng Mater Struct 14:789–796

    Article  Google Scholar 

  6. Waterhouse RB (1988) The effect of surface treatment on the fatigue & fretting fatigue of materials. Pergamon Press, Oxford

    Google Scholar 

  7. Majzoobi G, Jaleh M (2007) Duplex surface treatments on AL7075-T6 alloy against fretting fatigue behavior by application of titanium coating plus nitriding. Mater Sci Eng A 452:673–681

    Article  Google Scholar 

  8. Majzoobi G, Nemati J, Novin Rooz A, Farrahi G (2009) Modification of fretting fatigue behavior of AL7075–T6 alloy by the application of titanium coating using IBED technique and shot peening. Tribol Int 42:121–129

    Article  Google Scholar 

  9. Nalla R, Altenberger I, Noster U, Liu G, Scholtes B, Ritchie R (2003) On the influence of mechanical surface treatments—deep rolling and laser shock peening—on the fatigue behavior of Ti–6Al–4V at ambient and elevated temperatures. Mater Sci Eng A 355:216–230

    Article  Google Scholar 

  10. Balland P, Tabourot L, Degre F, Moreau V (2013) Mechanics of the burnishing process. Precis Eng 37:129–134

    Article  Google Scholar 

  11. Rao J, Reddy A, Rao (2011) The effect of roller burnishing on surface hardness and surface roughness on mild steel specimens. Int J Appl Eng Res 1:777–785

    Google Scholar 

  12. Schuh A et al (2007) Deep rolling of titanium rods for application in modular total hip arthroplasty. J Biomed Mater Res B Appl Biomater 81:330–335

    Article  Google Scholar 

  13. Shepard MJ, Prevey, Jayaraman N (2004) Effects of surface treatment on fretting fatigue performance of Ti-6Al-4V, DTIC Document

  14. Travieso-Rodríguez JA, González-Rojas HA, Gómez-Gras G, Dessein G, Alexis J (2013) Ball-burnishing process influence on hardness and residual stresses of aluminium A92017, TMT 2013 Proceedings

  15. Gulhane U, MishraP S, Mishra K (2012) Enhancement of surface roughness of 316L stainless steel and Ti-6Al-4V using low plasticity burnishing: DOE approach. I J

  16. Prabhu PR, Kulkarni S, Sharma S (2011) An experimental investigation on the effect of deep cold rolling parameters on surface roughness and hardness of AISI 4140 steel. World Acad Sci Eng Technol 60:1594–1598

    Google Scholar 

  17. Prabhu S, Kulkarni S, Sharma K, Jagannath, Bhat C (2012) Deep cold rolling process on AISI 4140 steel and optimization of surface roughness by response surface methodology

  18. Majzoobi G, Motlagh ST, Amiri A (2010) Numerical simulation of residual stress induced by roll-peening. Trans Indian Inst Metals 63:499–504

    Article  Google Scholar 

  19. Sayahi M, Sghaier S, Belhadjsalah H (2013) Finite element analysis of ball burnishing process: comparisons between numerical results and experiments. Int J Adv Manuf Technol 67:1665–1673

    Article  Google Scholar 

  20. Yen Y, Sartkulvanich P, Altan T (2005) Finite element modeling of roller burnishing process. CIRP Ann Manuf Technol 54:237–240

    Article  Google Scholar 

  21. Majzoobi G, Azadikhah K, Nemati J (2009) The effects of deep rolling and shot peening on fretting fatigue resistance of aluminum-7075-T6. Mater Sci Eng A 516:235–247

    Article  Google Scholar 

  22. Avilés R, Albizuri J, Rodríguez A, López de Lacalle L (2013) Influence of low-plasticity ball burnishing on the high-cycle fatigue strength of medium carbon AISI 1045 steel. Int J Fatigue 55:230–244

    Article  Google Scholar 

  23. Liu KK, Hill MR (2009) The effects of laser peening and shot peening on fretting fatigue in Ti–6Al–4V coupons. Tribol Int 42:1250–1262

    Article  Google Scholar 

  24. Altenberger I (2005) Deep rolling—the past, the present and the future, in Proceedings of 9th International Conference on Shot Peening 6–9

  25. Juijerm P, Altenberger I (2006) Fatigue behavior of deep rolled Al–Mg–Si–Cu alloy at elevated temperature. Scr Mater 55:943–946

    Article  Google Scholar 

  26. Altenberger I, Nalla RK, Sano Y, Wagner L, Ritchie RO (2012) On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti–6Al–4V at elevated temperatures up to 550 C. Int J Fatigue 44:292–302

    Article  Google Scholar 

  27. Majzoobi G, Minaii K (2013) An investigation into the effect of contact geometry on the rotary bending fretting fatigue life of Al 7075-T6. P I Mech Eng J-J Eng 227:1285–1296

    Google Scholar 

  28. Systèmes D (2010) Abaqus 6.10 online documentation, Abaqus User Subroutines Reference Manual

  29. Bonora N, Majzoobi G, Khademi E (2014) Numerical implementation of a new coupled cyclic plasticity and continuum damage model. Comput Mater Sci 81:538–547

    Article  Google Scholar 

  30. Röttger K (2002) Walzen hartgedrehter oberflaechen: Shaker

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Majzoobi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majzoobi, G.H., Zare Jouneghani, F. & Khademi, E. Experimental and numerical studies on the effect of deep rolling on bending fretting fatigue resistance of Al7075. Int J Adv Manuf Technol 82, 2137–2148 (2016). https://doi.org/10.1007/s00170-015-7542-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7542-z

Keywords

Navigation