Skip to main content

Advertisement

Log in

Evaluation on models of calculating energy consumption in metal cutting processes: a case of external turning process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The manufacturing industry has been focusing on calculating energy consumption because of increased sustainability and environmental consciousness, resulting in a large number of calculation models. However, evaluation on these existing models is missing, so that practitioners often have trouble selecting the right energy models. To identify the most appropriate, cost-effective, and easy-to-implement energy models, three tasks were conducted in this paper. First, various experimental or empirical energy consumption models of spindle acceleration, spindle rotation, feed and material removal, and those of machine tool during material removal processes are reviewed. Then, five evaluation criteria, applicability, accuracy, computational efforts, complexity of fitting coefficients, and ease of data collection, are proposed. These criteria are identified based on the general steps to run the calculation models. Finally, the evaluation criteria are applied with the supporting experimental data of external turning to rank the models. This work is expected to assist practitioners in selecting models to calculate energy consumption in metal cutting processes for a particular situation and purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mukherjee I, Ray PK (2006) A review of optimization techniques in metal cutting processes. Comput Ind Eng 50(1–2):15–34. doi:10.1016/j.cie.2005.10.001

    Article  Google Scholar 

  2. Ma J, Ge X, Chang SI, Lei S (2014) Assessment of cutting energy consumption and energy efficiency in machining of 4140 steel. Int J Adv Manuf Technol 74(9–12):1701–1708. doi:10.1007/s00170-014-6101-3

    Article  Google Scholar 

  3. Dahmus JB, Gutowski TG An environmental analysis of machining. In: 2004 ASME International Mechanical Engineering Congress and Exposition, IMECE 2004, November 13, 2004–November 19, 2004, Anaheim, CA, United states, 2004. American Society of Mechanical Engineers, Manufacturing Engineering Division, MED. American Society of Mechanical Engineers, pp 643–652. doi:10.1115/imece2004-62600

  4. Li W, Kara S (2011) An empirical model for predicting energy consumption of manufacturing processes: a case of turning process. Proc Inst Mech Eng B J Eng Manuf 225(9):1636–1646. doi:10.1177/2041297511398541

    Article  Google Scholar 

  5. Avram O, Stroud I, Xirouchakis P (2011) A multi-criteria decision method for sustainability assessment of the use phase of machine tool systems. Int J Adv Manuf Technol 53(5–8):811–828. doi:10.1007/s00170-010-2873-2

    Article  Google Scholar 

  6. Box GEP, Draper NR (1987) Empirical model-building and response surfaces. Wiley series in probability and mathematical statistics. John Wiley & Sons, Oxford, England

    Google Scholar 

  7. Arrazola PJ, Ozel T, Umbrello D, Davies M, Jawahir IS (2013) Recent advances in modelling of metal machining processes. CIRP Ann Manuf Technol 62(2):695–718. doi:10.1016/j.cirp.2013.05.006

    Article  Google Scholar 

  8. Fang N (2003) Slip-line modeling of machining with a rounded-edge tool—Part I: new model and theory. J Mech Phys Solids 51(4):715–742. doi:10.1016/S0022-5096(02)00060-1

    Article  MATH  Google Scholar 

  9. Luong LHS, Spedding TA (1995) A neural-network system for predicting machining behaviour. J Mater Process Technol 52(2–4):585–591. doi:10.1016/0924-0136(94)01626-C

    Article  Google Scholar 

  10. Munoz AA, Sheng P (1995) An analytical approach for determining the environmental impact of machining processes. J Mater Process Technol 53(3–4):736–758. doi:10.1016/0924-0136(94)01764-r

    Article  Google Scholar 

  11. Yang QB, Liu ZQ, Shi ZY, Wang B (2014) Analytical modeling of adiabatic shear band spacing for serrated chip in high-speed machining. Int J Adv Manuf Technol 71(9–12):1901–1908. doi:10.1007/s00170-014-5633-x

    Article  Google Scholar 

  12. Iwata K, Osakada K, Terasaka Y (1984) Process modeling of orthogonal cutting by the rigid-plastic finite-element method. J Eng Mater Technol Trans ASME 106(2):132–138

    Article  Google Scholar 

  13. Kim KW, Lee WY, Sin HC (1999) A finite-element analysis of machining with the tool edge considered. J Mater Process Technol 86(1–3):45–55

    Google Scholar 

  14. Lalwani DI, Mehta NK, Jain PK (2008) Experimental investigations of cutting parameters influence on cutting forces and surface roughness in finish hard turning of MDN250 steel. J Mater Process Technol 206(1–3):167–179. doi:10.1016/j.jmatprotec.2007.12.018

    Article  Google Scholar 

  15. Tang J, Du J, Chen Y (2009) Modeling and experimental study of grinding forces in surface grinding. J Mater Process Technol 209(6):2847–2854. doi:10.1016/j.jmatprotec.2008.06.036

    Article  Google Scholar 

  16. Mori M, Fujishima M, Inamasu Y, Oda Y (2011) A study on energy efficiency improvement for machine tools. CIRP Ann Manuf Technol 60(1):145–148. doi:10.1016/j.cirp.2011.03.099

    Article  Google Scholar 

  17. Draganescu F, Gheorghe M, Doicin CV (2003) Models of machine tool efficiency and specific consumed energy. J Mater Process Technol 141(1):9–15. doi:10.1016/s0924-0136(02)00930-5

    Article  Google Scholar 

  18. Peng T, Xu X (2014) Energy-efficient machining systems: a critical review. Int J Adv Manuf Technol 72(9–12):1389–1406. doi:10.1007/s00170-014-5756-0

    Article  Google Scholar 

  19. Hassan GA, Suliman SMA (1990) Experimental modeling and optimization of turning medium carbon-steel. Int J Prod Res 28(6):1057–1065. doi:10.1080/00207549008942775

    Article  Google Scholar 

  20. Zhang YJ (2014) Energy efficiency techniques in machining process: a review. Int J Adv Manuf Technol 71(5–8):1123–1132. doi:10.1007/s00170-013-5551-3

    Google Scholar 

  21. Balogun VA, Mativenga PT (2013) Modelling of direct energy requirements in mechanical machining processes. J Clean Prod 41:179–186. doi:10.1016/j.jclepro.2012.10.015

    Article  Google Scholar 

  22. Balogun VA, Mativenga PT (2014) Impact of un-deformed chip thickness on specific energy in mechanical machining processes. J Clean Prod 69:260–268. doi:10.1016/j.jclepro.2014.01.036

    Article  Google Scholar 

  23. Li L, Yan J, Xing Z (2013) Energy requirements evaluation of milling machines based on thermal equilibrium and empirical modelling. J Clean Prod 52:113–121. doi:10.1016/j.jclepro.2013.02.039

    Article  Google Scholar 

  24. Gutowski T, Dahmus J, Thiriez A (2006) Electrical energy requirements for manufacturing processes. In: 13th CIRP international conference on life cycle engineering, Leuven, Belgium, pp. 623–628

  25. Kara S, Li W (2011) Unit process energy consumption models for material removal processes. CIRP Ann Manuf Technol 60(1):37–40. doi:10.1016/j.cirp.2011.03.018

    Article  Google Scholar 

  26. Lv JX (2014) Research on energy supply modeling of computer numerical control machine tools for low carbon manufacturing. Thesis (PhD), Zhe Jiang University, Hang Zhou, China

  27. Rajemi MF, Mativenga PT, Aramcharoen A (2010) Sustainable machining: selection of optimum turning conditions based on minimum energy considerations. J Clean Prod 18(10–11):1059–1065. doi:10.1016/j.jclepro.2010.01.025

    Article  Google Scholar 

  28. Jia S, Tang RZ, Lv JX (2014) Therblig-based energy demand modeling methodology of machining process to support intelligent manufacturing. J Intell Manuf 25(5):913–931. doi:10.1007/s10845-012-0723-9

    Article  Google Scholar 

  29. He Y, Liu F, Wu T, Zhong FP, Peng B (2012) Analysis and estimation of energy consumption for numerical control machining. P I Mech Eng B J Eng 226(B2):255–266. doi:10.1177/0954405411417673

    Google Scholar 

  30. Avram OI, Xirouchakis P (2011) Evaluating the use phase energy requirements of a machine tool system. J Clean Prod 19(6–7):699–711. doi:10.1016/j.jclepro.2010.10.010

    Article  Google Scholar 

  31. Gara S, Bouzid W, Ben Amar M, Hbaieb M (2009) Cost and time calculation in rough NC turning. Int J Adv Manuf Technol 40(9–10):971–981. doi:10.1007/s00170-008-1417-5

    Article  Google Scholar 

  32. Lv JX, Tang RZ, Jia S (2014) Therblig-based energy supply modeling of computer numerical control machine tools. J Clean Prod 65:168–177. doi:10.1016/j.jclepro.2013.09.055

    Article  Google Scholar 

  33. Behrendt T, Zein A, Min S (2012) Development of an energy consumption monitoring procedure for machine tools. CIRP Ann Manuf Technol 61(1):43–46. doi:10.1016/j.cirp.2012.03.103

    Article  Google Scholar 

  34. Li W, Zein A, Kara S, Herrmann C An investigation into fixed energy consumption of machine tools. In: 18th CIRP International Conference on Life Cycle Engineering: Glocalized Solutions for Sustainability in Manufacturing, May 2, 2011–May 4, 2011, Braunschweig, Germany, 2011. Glocalized Solutions for Sustainability in Manufacturing—Proceedings of the 18th CIRP International Conference on Life Cycle Engineering. Springer Science and Business Media, LLC, pp 268–273. doi:10.1007/978-3-642-19692-8-47

  35. Murray VR, Zhao F, Sutherland JW (2012) Life cycle analysis of grinding: a case study of non-cylindrical computer numerical control grinding via a unit-process life cycle inventory approach. Proc Inst Mech Eng B J Eng Manuf 226(10):1604–1611. doi:10.1177/0954405412454102

    Article  Google Scholar 

  36. Li YF, He Y, Wang Y, Yan P, Liu XH (2014) A framework for characterising energy consumption of machining manufacturing systems. Int J Prod Res 52(2):314–325. doi:10.1080/00207543.2013.813983

    Article  Google Scholar 

  37. Lanz M, Mani M, Leong S, Lyons K, Ranta A, Ikkala K, Bengtsson N Impact of energy measurements in machining operations. In: ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2010, August 15, 2010–August 18, 2010, Montreal, QC, Canada, 2010. Proceedings of the ASME Design Engineering Technical Conference. American Society of Mechanical Engineers, pp 867–873. doi:10.1115/detc2010-28713

  38. Liu F, Xu z, Dan B (1995) Energy performance of mechanical machining system and its application. China Machine Press, Beijing (in Chinese)

    Google Scholar 

  39. Dietmair A, Verl A, Eberspaecher P (2011) Model-based energy consumption optimisation in manufacturing system and machine control. Int J Manuf Res 6(4):380–401. doi:10.1504/ijmr.2011.043238, Special issue on RFID and Adaptive Technologies

    Article  Google Scholar 

  40. Shi J, Liu F, Xu D, Chen G (2009) Decision model and practical method of energy-saving in NC machine tool. China Mech Eng 11:1344–1346 (in Chinese)

    Google Scholar 

  41. Mativenga PT, Rajemi MF (2011) Calculation of optimum cutting parameters based on minimum energy footprint. CIRP Ann Manuf Technol 60(1):149–152. doi:10.1016/j.cirp.2011.03.088

    Article  Google Scholar 

  42. Hu S, Liu F, He Y, Hu T (2012) No-load energy parameter characteristics of computerized numerical control machine tool main transmission system. Comput Integr Manuf Syst 02:326–331

    Google Scholar 

  43. Jia S, Tang R-Z, Lu J-X (2013) Therblig-based modeling methodology for cutting power and its application in external turning. Comput Integr Manuf Syst 19(5):1015–1024

    Google Scholar 

  44. Altintas Y, Verl A, Brecher C, Uriarte L, Pritschow G (2011) Machine tool feed drives. CIRP Ann Manuf Technol 60(2):779–796. doi:10.1016/j.cirp.2011.05.010

    Article  Google Scholar 

  45. Di R, Pan X, Fan X (2001) Mechanical manufacturing engineering. Zhejiang University Press, Hangzhou (in Chinese)

    Google Scholar 

  46. Wang Q, Liu F, Li C (2013) An integrated method for assessing the energy efficiency of machining workshop. J Clean Prod 52(0):122–133. doi:10.1016/j.jclepro.2013.03.020

    Article  MathSciNet  Google Scholar 

  47. Liu Q, Chen X, Wang Y, Gindy N (2008) Empirical modelling of grinding force based on multivariate analysis. J Mater Process Technol 203(1–3):420–430. doi:10.1016/j.jmatprotec.2007.10.058

    Article  Google Scholar 

  48. Abou-El-Hossein KA, Kadirgama K, Hamdi M, Benyounis KY (2007) Prediction of cutting force in end-milling operation of modified AISI P20 tool steel. J Mater Process Technol 182(1–3):241–247. doi:10.1016/j.jmatprotec.2006.07.037

    Article  Google Scholar 

  49. Li JG, Lu Y, Zhao H, Li P, Yao YX (2014) Optimization of cutting parameters for energy saving. Int J Adv Manuf Technol 70(1–4):117–124. doi:10.1007/s00170-013-5227-z

    Article  Google Scholar 

  50. Schlosser R, Klocke F, Lung D (2011) Sustainability in manufacturing—energy consumption of cutting processes. In: Seliger G, Khraisheh MMK, Jawahir IS (eds) Advances in Sustainable Manufacturing. Springer, Berlin Heidelberg, pp 85–89. doi:10.1007/978-3-642-20183-7_13

    Chapter  Google Scholar 

  51. He Y, Liu F, Wu T, Zhong FP, Peng B (2011) Analysis and estimation of energy consumption for numerical control machining. Proc Inst Mech Eng B J Eng Ma 226(2):255–266. doi:10.1177/0954405411417673

    Article  Google Scholar 

  52. Liu F, Liu S (2012) Multiperiod energy model of electromechanical main driving system during the service process of machine tools. J Mech Eng 21:132–140 (in Chinese)

    Article  Google Scholar 

  53. Hu S, Liu F, He Y, Hu T (2012) An on-line approach for energy efficiency monitoring of machine tools. J Clean Prod 27:133–140. doi:10.1016/j.jclepro.2012.01.013

    Article  Google Scholar 

  54. Liu S, Liu F, Wang Q (2012) Energy efficiency acquisition method for electromechanical main driver system during the service process of machine tools. J Mech Eng 23:111–117 (in Chinese)

    Article  Google Scholar 

  55. Al-Sulaiman FA, Sheikh AK, Baseer MA (2004) Empirical models of mechanical and electrical drilling power of mild steel. P I Mech Eng B J Eng 218(9):1181–1189. doi:10.1243/0954405041897077

    Google Scholar 

  56. Diaz N, Redelsheimer E, Dornfeld D Energy consumption characterization and reduction strategies for milling machine tool use. In: 18th CIRP International Conference on Life Cycle Engineering: Glocalized Solutions for Sustainability in Manufacturing, May 2, 2011–May 4, 2011, Braunschweig, Germany, 2011. Glocalized Solutions for Sustainability in Manufacturing—Proceedings of the 18th CIRP International Conference on Life Cycle Engineering. Springer Science and Business Media, LLC, pp 263–267. doi:10.1007/978-3-642-19692-8-46

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renzhong Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Q., Tang, R., Lv, J. et al. Evaluation on models of calculating energy consumption in metal cutting processes: a case of external turning process. Int J Adv Manuf Technol 82, 2087–2099 (2016). https://doi.org/10.1007/s00170-015-7477-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7477-4

Keywords

Navigation