Skip to main content
Log in

Analysis of tool-particle interactions during cutting process of metal matrix composites

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Metal matrix composites (MMCs) have become common materials that are employed in different industrial applications due to their outstanding strength and wear resistance. However, machining MMCs is considered to be a challenging process. This paper presents a micro-mechanical finite element analysis developed for simulation of MMC machining. Unlike the previously developed FE models, this model simulates the behavior of all main components that distinguish the MMC, namely the matrix, particles, and the particle-matrix interface, during the process. As a result, various aspects of the process, such as debonding and fracture in the particles and different scenarios of tool-particle interactions can be studied using the proposed model. The predicted forces were compared to the measured ones and used to verify the presented model. The developed model is successful in providing a broad understanding of MMC machining process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bandyopadhyay NR, Ghosh S, Basumallick A (2007) New generation metal matrix composites. Mater Manuf Process 22(6):679–682

    Article  Google Scholar 

  2. Kannan S, Kishawy H (2008) Tribological aspects of machining aluminium metal matrix composites. J Mater Process Technol 198(1):399–406

    Article  Google Scholar 

  3. Krishnaraj V, Prabukarthi A, Ramanathan A, Elanghovan N, Kumar MS, Zitoune R, Davim JP (2012) Optimization of machining parameters at high speed drilling of carbon fiber reinforced plastic (CFRP) laminates. Compos Part B 43(4):1791–1799

    Article  Google Scholar 

  4. Zitoune R, Krishnaraj V, Sofiane Almabouacif B, Collombet F, Sima M, Jolin A (2012) Influence of machining parameters and new nano-coated tool on drilling performance of CFRP/Aluminium sandwich. Compos Part B 43(3):1480–1488

    Article  Google Scholar 

  5. Muguthu JN, Gao D (2013) Profile fractal dimension and dimensional accuracy analysis in machining metal matrix composites (MMCs). Mater Manuf Process 28(10):1102–1109. doi:10.1080/10426914.2013.823501

    Article  Google Scholar 

  6. Sidhu SS, Batish A, Kumar S (2013) EDM of metal matrix composite for parameter design using lexicographic goal programming. Mater Manuf Process 28(4):495–500. doi:10.1080/10426914.2013.763958

    Article  Google Scholar 

  7. Kishawy HA, Kannan S, Balazinski M (2004) An energy based analytical force model for orthogonal cutting of metal matrix composites. CIRP Ann Manuf Technol 53(1):91–94. doi:10.1016/S0007-8506(07)60652-0

    Article  Google Scholar 

  8. Sikder S, Kishawy HA (2012) Analytical model for force prediction when machining metal matrix composite. Int J Mech Sci 59(1):95–103. doi:10.1016/j.ijmecsci.2012.03.010

    Article  Google Scholar 

  9. Kishawy HA, Kannan S, Balazinski M (2005) Analytical modeling of tool wear progression during turning particulate reinforced metal matrix composites. CIRP Ann—Manuf Technol 54(1):55–58. doi:10.1016/S0007-8506(07)60048-1

    Article  Google Scholar 

  10. Kannan S, Kishawy HA (2006) Surface characteristics of machined aluminium metal matrix composites. Int J Mach Tools Manuf 46(15):2017–2025. doi:10.1016/j.ijmachtools.2006.01.003

    Article  Google Scholar 

  11. Bhatnagar N, Nayak D, Singh I, Chouhan H, Mahajan P (2004) Determination of machining-induced damage characteristics of fiber reinforced plastic composite laminates. Mater Manuf Process 19(6):1009–1023

    Article  Google Scholar 

  12. Singh G, Teli M, Samanta A, Singh R (2013) Finite element modeling of laser-assisted machining of AISI D2 tool steel. Mater Manuf Process 28(4):443–448

    Article  Google Scholar 

  13. Atlati S, Haddag B, Nouari M, Zenasni M (2014) Thermomechanical modelling of the tool-workmaterial interface in machining and its implementation using the ABAQUS VUINTER subroutine. Int J Mech Sci 87:102–117

    Article  Google Scholar 

  14. Salahshoor M, Guo YB (2014) Finite element simulation and experimental validation of residual stresses in high speed dry milling of biodegradable magnesium-calcium alloys. Int J Mech Sci 80:153–159

    Article  Google Scholar 

  15. Zhu Y, Kishawy HA (2005) Influence of alumina particles on the mechanics of machining metal matrix composites. Int J Mach Tools Manuf 45(4–5):389–398. doi:10.1016/j.ijmachtools.2004.09.013

    Article  Google Scholar 

  16. Pramanik A, Zhang LC, Arsecularatne JA (2007) An FEM investigation into the behavior of metal matrix composites: tool-particle interaction during orthogonal cutting. Int J Mach Tools Manuf 47(10):1497–1506

    Article  Google Scholar 

  17. Zhou L, Huang ST, Wang D, Yu XL (2011) Finite element and experimental studies of the cutting process of SiCp/Al composites with PCD tools. Int J Adv Manuf Technol 52(5–8):619–626. doi:10.1007/s00170-010-2776-2

    Article  Google Scholar 

  18. Dandekar CR, Shin YC (2009) Multi-step 3-D finite element modeling of subsurface damage in machining particulate reinforced metal matrix composites. Compos A: Appl Sci Manuf 40(8):1231–1239

    Article  Google Scholar 

  19. Wang T, Xie L, Wang X (2015) Simulation study on defect formation mechanism of the machined surface in milling of high volume fraction SiCp/Al composite. Int J Adv Manuf Technol:1–10. doi:10.1007/s00170-015-6876-x

  20. Umer U, Ashfaq M, Qudeiri JA, Hussein HMA, Danish SN, Al-Ahmari AR (2015) Modeling machining of particle-reinforced aluminum-based metal matrix composites using cohesive zone elements. Int J Adv Manuf Technol:1–9. doi:10.1007/s00170-014-6715-5

  21. Özel T (2006) The influence of friction models on finite element simulations of machining. Int J Mach Tools Manuf 46(5):518–530

    Article  Google Scholar 

  22. Dandekar CR, Shin YC (2012) Modeling of machining of composite materials: a review. Int J Mach Tools Manuf 57:102–121

    Article  Google Scholar 

  23. Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: International Ballistics Committee, The Hague, Netherlands. p 1–2

  24. Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21(1):31–48

    Article  Google Scholar 

  25. Shackelford JF, Alexander W (2000) CRC Materials Science and Engineering Handbook, Third Edition. Taylor & Francis

  26. Holt JM, Gibson C, Ho CY (1999) Structural alloys handbook. vol v. 2. CINDAS/Purdue University, West Lafayette

  27. Lesuer DR, Kay GJ, LeBlanc MM (1999) Modeling large-strain, high-rate deformation in metals. In: Third Biennial Tri-Laboratory Engineering Conference on Modeling and Simulation, Pleasanton, CA, United States of America

  28. Munro RG (1997) Evaluated material properties for a sintered α-alumina. J Am Ceram Soc 80(8):1919–1928

    Article  Google Scholar 

  29. Foulk JW, Allen DH, Helms KLE (2000) Formulation of a three-dimensional cohesive zone model for application to a finite element algorithm. Comput Methods Appl Mech Eng 183(1–2):51–66. doi:10.1016/S0045-7825(99)00211-X

    Article  MATH  Google Scholar 

  30. Tvergaard V (2003) Debonding of short fibres among particulates in a metal matrix composite. Int J Solids Struct 40(25):6957–6967. doi:10.1016/S0020-7683(03)00347-0

    Article  MATH  Google Scholar 

  31. Abaqus (2014) Abaqus 6.14 Documentation. SIMULIA, United States of America

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ghandehariun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghandehariun, A., Kishawy, H.A., Umer, U. et al. Analysis of tool-particle interactions during cutting process of metal matrix composites. Int J Adv Manuf Technol 82, 143–152 (2016). https://doi.org/10.1007/s00170-015-7346-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7346-1

Keywords

Navigation