Skip to main content
Log in

Experimental study on surface generation in vibration-assisted micro-milling of glass

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Micro-milling of glass is a technique to fabricate micro-optics with complex geometry using a defined cutting edge. This paper presents the experimental study on the surface generation in vibration-assisted micro-milling of a BK-7 optical glass. A piezoelectric-actuated 2D vibration stage with flexure design is developed to apply vibration assistance on the workpiece in the micro-milling process. The effects of vibration direction, vibration amplitude and frequency on the surface roughness and profile are determined from a series of vibration-assisted micro-milling experiments. It is concluded that the vibration applied in normal direction has a major effect on the improvement of surface quality. The vibration assistance enhances the brittle-ductile transition of glass material and therefore reduces the damage on the machined surface. Higher vibration frequencies improve the surface quality by reducing the waviness on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fang FZ, Zhang XD, Weckenmann A, Zhang GX, Evans C (2013) Manufacturing and measurement of freeform optics. CIRP Ann Manuf Technol 62(2):823–846

    Article  Google Scholar 

  2. Komanduri R, Lucca DA, Tani Y (1997) Technological advances in fine abrasive processes. CIRP Ann Manuf Technol 46(2):545–596

    Article  Google Scholar 

  3. Arif M, Rahman M, San WY (2011) Ultraprecision ductile mode machining of glass by micromilling process. J Manuf Process 13(1):50–59

    Article  Google Scholar 

  4. Arif M, Rahman M, San WY, Doshi N (2011) An experimental approach to study the capability of end-milling for microcutting of glass. Int J Adv Manuf Technol 53:1063–1073

    Article  Google Scholar 

  5. Arif M, Rahman M, San WY (2012) A model to determine the effect of tool diameter on the critical feed rate for ductile-brittle transition in milling process of brittle material. ASME J Manuf Sci Eng 134(5):051012

    Article  Google Scholar 

  6. Arif M, Rahman M, San WY (2011) Analytical model to determine the critical feed per edge for ductile-brittle transition in milling process of brittle materials. Int J Mach Tools Manuf 51(3):170–181

    Article  Google Scholar 

  7. Blackley W, Scattergood R (1991) Ductile-regime machining model for diamond turning of brittle materials. Precis Eng 13(2):95–103

    Article  Google Scholar 

  8. Muhammad A, Mustafizur R, Wong YS (2012) An experimental study on the machining characteristics in ductile-mode milling of BK-7 glass. Int J Adv Manuf Technol 60:487–495

    Article  Google Scholar 

  9. Fang FZ, Zhang GX (2004) An experimental study of optical glass machining. Int J Adv Manuf Technol 23:155–160

    Article  Google Scholar 

  10. Moriwaki T, Shamoto E (1995) Ultrasonic elliptical vibration cutting. CIRP Ann Manuf Technol 44(1):31–34

    Article  Google Scholar 

  11. Liu D, Cong W, Pei ZJ, Tang Y (2012) A cutting force model for rotary ultrasonic machining of brittle materials. Int J Mach Tools Manuf 52(1):77–84

    Article  Google Scholar 

  12. Brehl D, Dow T, Garrard K, Sohn A (1999) Micro-structure fabrication using elliptical vibration-assisted machining (EVAM). ASPE Proc 39:511–515

    Google Scholar 

  13. Moriwaki T, Shamoto E, Inoue K (1992) Ultraprecision ductile cutting of glass by applying ultrasonic vibration. CIRP Ann Manuf Technol 41(1):141–144

    Article  Google Scholar 

  14. Chen G, Chang Y (2005) Using two-dimensional vibration cutting for micro-milling. Int J Mach Tools Manuf 46:659–666

    Google Scholar 

  15. Ding H, Chen SH, Cheng K (2011) Dynamic surface generation modeling of two-dimensional vibration-assisted micro-end-milling. Int J Adv Manuf Technol 53:1075–1079

    Article  Google Scholar 

  16. Ding H, Chen S-J, Cheng K (2010) Two-dimensional vibration-assisted micro end milling: cutting force modelling and machining process dynamics. Proc Inst Mech Eng B J Eng Manuf 224(12):1775–1783

    Article  Google Scholar 

  17. Hsu C, Huang C, Wu C (2007) Milling of MAR-M247 nickel-based superalloy with high temperature and ultrasonic aiding. Int J Adv Manuf Technol 34(9-10):857–866

    Article  Google Scholar 

  18. Ding H, Ibrahim R, Cheng K, Chen S-J (2010) Experimental study on machinability improvement of hardened tool steel using two dimensional vibration-assisted micro-end-milling. Int J Mach Tools Manuf 50(12):1115–1118

    Article  Google Scholar 

  19. Zarchi MMA, Razfar MR, Abdullah A (2012) Investigation of the effect of cutting speed and vibration amplitude on cutting forces in ultrasonic-assisted milling. Proc Inst Mech Eng B J Eng Manuf 226(7):1185–1191

    Article  Google Scholar 

  20. Zarchi MA, Razfar M, Abdullah A (2013) Influence of ultrasonic vibrations on side milling of AISI 420 stainless steel. Int J Adv Manuf Technol 66(1-4):83–89

    Article  Google Scholar 

  21. Janghorbanian J, Razfar MR, Zarchi MMA (2013) Effect of cutting speed on tool life in ultrasonic-assisted milling process. Proc Inst Mech Eng B J Eng Manuf 227(8):1157–1164

    Article  Google Scholar 

  22. Xing D, Zhang J, Shen X, Zhao Y, Wang T (2013) Tribological properties of ultrasonic vibration assisted milling aluminium alloy surfaces. Procedia CIRP 6:540–545

    Article  Google Scholar 

  23. Shen X-H, Zhang J-H, Li H, Wang J-J, Wang X-C (2012) Ultrasonic vibration-assisted milling of aluminum alloy. Int J Adv Manuf Technol 63(1-4):41–49

    Article  Google Scholar 

  24. Li K-M, Wang S-L (2013) Effect of tool wear in ultrasonic vibration-assisted micro-milling. Proc Inst Mech Eng B J Eng Manuf 0954405413510514

  25. Ding H, Chen S, Ibrahim R, Cheng K (2011) Investigation of the size effect on burr formation in two-dimensional vibration-assisted micro end milling. Proc Inst Mech Eng B J Eng Manuf 225(11):2032–2039

    Article  Google Scholar 

  26. Razfar M, Sarvi P, Zarchi MA (2011) Experimental investigation of the surface roughness in ultrasonic-assisted milling. Proc Inst Mech Eng B J Eng Manuf 225(9):1615–1620

    Article  Google Scholar 

  27. Shen X-H, Zhang J, Xing DX, Zhao Y (2012) A study of surface roughness variation in ultrasonic vibration-assisted milling. Int J Adv Manuf Technol 58(5-8):553–561

    Article  Google Scholar 

  28. Yoshino M, Aoki T, Shirakashi T (2001) Scratching test of hard-brittle materials under high hydrostatic pressure. J Manuf Sci Eng 123(2):231–239

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoliang Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Xie, B. Experimental study on surface generation in vibration-assisted micro-milling of glass. Int J Adv Manuf Technol 81, 507–512 (2015). https://doi.org/10.1007/s00170-015-7211-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7211-2

Keywords

Navigation