Skip to main content
Log in

X-MR control chart for autocorrelated fuzzy data using D p,q -distance

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A control chart is a tool for investigating whether the variation in a production process is random or assignable. XM R control chart is a binary control chart on which average values of process and moving range between observations are used to discover the variability in the process. In an ordinary control chart, the data are crisp values but sometimes, the data are generated as vague and uncertain values because of some of environmental conditions and other factors. In such cases, fuzzy sets theory is a useful tool for analyzing data. On the other hand, the assumption of independence between observations cannot be accepted because the probability of false warning will increase if the data are autocorrelated and their correlation is ignored. In this article, we will discuss the construction of fuzzy control charts for autocorrelated fuzzy observations and employment of ranking method in order to find out whether the observations are in or out of control. In fact, by using defined D p,q -distance between fuzzy numbers, we calculate their variance, covariance, and autocorrelation coefficient. The autocorrelation coefficient is used in order to modify the limit of control chart. By using D p,q -distance, we present a new approach for constructing control charts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alwan LC, Roberts HV (1988) Time series modeling for statistical process control. Journal Of Business & Economic Statistics 6:87–95

    Google Scholar 

  2. Box GEP, Luceno A (1997) Statistical control by monitoring and feedback adjustment. Wiley, New York

    MATH  Google Scholar 

  3. Bustince H, Burillo P (1995) Correlation of interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst 74:237–244

    Article  MATH  MathSciNet  Google Scholar 

  4. Carlsson C, Fullér R, Majlender P (2005) On possibilistic correlation. Fuzzy Sets Syst 155:425–445

    Article  MATH  Google Scholar 

  5. Cheng CB (2005) Fuzzy process control: Construction of control charts with fuzzy numbers. Fuzzy Sets Syst 154:287–303

    Article  Google Scholar 

  6. Erginel N (2008) Fuzzy individual and moving average control charts with a-cut. J Intell Fuzzy Syst 19:373–383

    MATH  Google Scholar 

  7. Faraz A, Moghadam M (2007) Fuzzy control chart a beter alternative for shewhart average chart. Qual Quant 41:375–385

    Article  Google Scholar 

  8. Goldsmith PH, Whitfield H (1961) Average run lengths in the cumulative chart quality control schemes. Technimetrics 3:11–20

    Article  MathSciNet  Google Scholar 

  9. Grzegorzewski P (1997) Control charts for fuzzy data. In: Proceedings of the 5th European congress on intelligent techniques and soft computing EUFIT97, 1326-1330. Aachen

  10. Grzegorzewski P (1998) Metrics and orders in space of fuzzy numbers. Fuzzy Set Syst 97:83–94

    Article  MATH  MathSciNet  Google Scholar 

  11. Gülbay M, Kahraman C (2006) Development of fuzzy process control charts and fuzzy unnatural pattern analyses. Comput Stat Data Anal 51:434–451

    Article  MATH  Google Scholar 

  12. Gülbay M, Kahraman C, Ruan D (2004) a-Cuts fuzzy control charts for linguistic data: International. J Intell Syst 19:1173–1196

    Article  MATH  Google Scholar 

  13. Hung W, Wu J (2002) Correlation of intuitionistic fuzzy sets by centroid method. Inf Sci 144:219–225

    Article  MATH  MathSciNet  Google Scholar 

  14. Kanagawa A, Tamaki F, Ohta H (1993) Control charts for process average and variability based on linguistic data. Int J Prod Res 31(4):913–922

    Article  MATH  Google Scholar 

  15. Kaya I, Kahraman C (2011) Process capability analyses based on fuzzy measurements and fuzzy control charts. Expert Syst Appl 38:3172–3184

    Article  Google Scholar 

  16. Laviolette M, Seamanb JW, Barrett JD, Woodall WH (1995) A probabilistic and statistical view of fuzzy methods. Technometrics 37(3):249–261

    Article  MATH  Google Scholar 

  17. Lu CW, Reynolds MR JR (1999) EWMA control charts for monitoring the mean of autocorrelated process. J Qual Technol 31:166–188

    Google Scholar 

  18. Lu CW, Reynolds MR JR (2001) CUSUM charts for monitoring an autocorrelated process. J Qual Technol 33:316–334

    Google Scholar 

  19. Mahdavi I, Heidarzadeh A, Sadeghpour Gildeh B, Mahdavi Amiri N (2009) A general fuzzy TOPSIS model in multiple criteria decision making. Int J Adv Manuf Technol 45:406– 429

    Article  Google Scholar 

  20. Maragah H, Woodall WH (1992) The effect of autocorrelation on the restropective X chart. Commun Stat Simul Comput 40(1):29–42

    Article  MATH  Google Scholar 

  21. Mohammadi J, Taheri SM (2003) Pedomodels fitting with fuzzy least squares regression. Iranian J Fuzzy Syst 1:45–62

    MathSciNet  Google Scholar 

  22. Montgomary DC (2009) Introduction to statistical quality control, 6th ed. Wiley, New York

    Google Scholar 

  23. Noorossana R, Farrokhi M, Saghaei A (2003) Using neural networks to detect and classify out-of-control signals in autocorrelated processes. Qual Reliab Eng Int 19(6):493–504

    Article  Google Scholar 

  24. Prajapati DR (2003) Performance of Conventional X-bar Chart for Autocorrelated Data Using Smaller Sample Sizes. In: Proceedings of the World Congress on Engineering and Computer Science 2013 Vol II, October 23-25, 2013, San Francisco, USA

  25. Puri ML, Ralescu DA (1986) Fuzzy random variables. J Math Anal Appl 114:409–422

    Article  MATH  MathSciNet  Google Scholar 

  26. Raz T, Wang JH (1990) Probabilistic and membership approaches in the construction of control charts for linguistic data. Prod Plan Control 1:147–157

    Article  Google Scholar 

  27. Reynolds MR JR, Arnold JC, Baik JW (1996) Variable sampling interval X charts in the presence of correlation. J Qual Technol 28:12–30

    Google Scholar 

  28. Sadeghpour Gildeh B, Gien D (2001) La distance-Dp,q et le coefficient de corrélation entre deux variables aléatoires floues. Rencontres francophones sur la logique floue et ses applications LFA 01, November 26-27, 2001, 97-102. Mons, Belgium

  29. Tajdin A, Mahdavia I, Mahdavi-Amiri N, Sadeghpour Gildeh B (2010) Computing a fuzzy shortest path in a network with mixed fuzzy arc lengths using lengths using a-Cut. Comput Math Appl 60:989–1002

    Article  MATH  MathSciNet  Google Scholar 

  30. Wang JH, Raz T (1990) On the construction of control charts using linguistic variables. Int J Prod Res 28:477–487

    Article  Google Scholar 

  31. Woodall WH, Faltin FW (1993) Autocorrelated data and SPC. ASQC Statistics Division. Newsletter 13(4):18–21

    Google Scholar 

  32. Zadeh LA (1965) Fuzzy set. Inf Control 8:338–353

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahram Sadeghpour Gildeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gildeh, B.S., Shafiee, N. X-MR control chart for autocorrelated fuzzy data using D p,q -distance. Int J Adv Manuf Technol 81, 1047–1054 (2015). https://doi.org/10.1007/s00170-015-7199-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7199-7

Keywords

Navigation