Skip to main content
Log in

Investigation of droplet transfer behaviours in cold metal transfer (CMT) process on welding Ti-6Al-4V alloy

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Ti-6Al-4V alloy is widely used in the aeroengine industry due to its excellent comprehensive mechanical properties. In this paper, the droplet transfer behaviours of cold metal transfer (CMT) welding Ti-6Al-4V alloy have been studied by analysing captured electrical waveforms and high-speed images of droplet transfer process. The results indicated that the current and voltage waveforms of CMT welding Ti-6Al-4V alloy are different from that of typical CMT cycle. A current pulse appears in short-circuit phase to adjust energy distributions of different stages, and it results in smoother droplet transfer process. Frequency of droplet transfer increases with augment of wire feed rate or decrease of inductance correction value. Droplet size is greater with high wire feed rate or small inductance correction value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li AH, Zhao J, Luo HB, Pei ZQ, Wang ZM (2012) Progressive tool failure in high-speed dry milling of Ti-6Al-4V alloy with coated carbide tools. Int J Adv Manuf Technol 58(5–8):465–478

    Article  Google Scholar 

  2. Peters M, Kumpfert J, Ward CH, Leyens C (2003) Titanium alloys for aerospace applications. Adv Eng Mater 5(6):419–427

    Article  Google Scholar 

  3. Liao SC, Duffy J (1998) Adiabatic shear bands in a Ti-6Al-4V titanium alloy. J Mech Phys Solids 46(11):2201–2231

    Article  Google Scholar 

  4. Brandl E, Baufeld B, Leyens C, Gault R (2010) Additive manufactured Ti-6Al-4V using welding wire: comparison of laser and arc beam deposition and evaluation with respect to aerospace material specifications. Phys Procedia 5:595–606

    Article  Google Scholar 

  5. Tsay LW, Shan YP, Chao YH, Shu WY (2006) The influence of porosity on the fatigue crack growth behavior of Ti-6Al-4V laser welds. J Mater Sci 41(22):7498–7505

    Article  Google Scholar 

  6. Saresh N, Pillai MG, Mathew J (2007) Investigations into the effects of electron beam welding on thick Ti-6Al-4V titanium alloy. J Mater Process Technol 192:83–88

    Article  Google Scholar 

  7. Wang S, Wu X (2012) Investigation on the microstructure and mechanical properties of Ti-6Al-4V alloy joints with electron beam welding. Mater Des 36:663–670

    Article  Google Scholar 

  8. Babu NK, Raman S, Murthy CV, Reddy GM (2007) Effect of beam oscillation on fatigue life of Ti-6Al-4V electron beam weldments. Mater Sci Eng A Struct 471(1):113–119

    Article  Google Scholar 

  9. Zhang Y, Sato YS, Kokawa H, Park SHC, Hirano S (2008) Microstructural characteristics and mechanical properties of Ti-6Al-4V friction stir welds. Mater Sci Eng A Struct 485(1):448–455

    Article  Google Scholar 

  10. Vairis A, Frost M (1999) On the extrusion stage of linear friction welding of Ti 6Al 4V. Mater Sci Eng A Struct 271(1):477–484

    Article  Google Scholar 

  11. Wanjara P, Jahazi M (2005) Linear friction welding of Ti-6Al-4V: processing, microstructure, and mechanical-property inter-relationships. Metall Mater Trans A 36(8):2149–2164

    Article  Google Scholar 

  12. Yang M, Qi B, Cong B, Liu F, Yang Z (2013) Effect of pulse frequency on microstructure and properties of Ti-6Al-4V by ultrahigh-frequency pulse gas tungsten arc welding. Int J Adv Manuf Technol 68(1–4):19–31

    Article  Google Scholar 

  13. Taylor JC, Hondrum SO, Prasad A, Brodersend CA (1998) Effects of joint configuration for the arc welding of cast Ti-6Al-4V alloy rods in argon. J Prosthet Dent 79(3):291–297

    Article  Google Scholar 

  14. Sadler H (1999) A look at the fundamentals of gas arc metal welding. Weld J 78(5):45–57

    Google Scholar 

  15. Pickin CG, Young K (2006) Evaluation of cold metal transfer (CMT) process for welding aluminium alloy. Sci Technol Weld Join 11(5):583–585

    Article  Google Scholar 

  16. Feng JC, Zhang HT, He P (2009) The CMT short-circuiting metal transfer process and its use in thin aluminium sheets welding. Mater Des 30(5):1850–1852

    Article  Google Scholar 

  17. Zhang HT, Feng JC, He P, Zhang BB, Chen JM, Wang L (2009) The arc characteristics and metal transfer behaviour of cold metal transfer and its use in joining aluminium to zinc-coated steel. Mater Sci Eng A Struct 499(1):111–113

    Article  Google Scholar 

  18. Benoit A, Jobez S, Paillard P, Klosek V, Baudin T (2011) Study of Inconel 718 weldability using MIG CMT process. Sci Technol Weld Join 16(6):477–482

    Article  Google Scholar 

  19. Rozmus-Górnikowska M, Cieniek Ł, Blicharski M, Kusiński J (2014) Microstructure and microsegregation of an Inconel 625 weld overlay produced on steel pipes by the cold metal transfer technique. Arch Metall Mater 59(3):1081–1084

    Google Scholar 

  20. Cao R, Sun JH, Chen JH, Wang PC (2014) Weldability of CMT joining of AA6061-T6 to boron steels with various coatings. Weld J

  21. Zhang C, Li G, Gao M, Yan J, Zeng XY (2013) Microstructure and process characterization of laser-cold metal transfer hybrid welding of AA6061 aluminum alloy. Int J Adv Manuf Technol 68(5–8):1253–1260

    Article  Google Scholar 

  22. Shang J, Wang K, Zhou Q, Zhang D, Huang J, Li G (2012) Microstructure characteristics and mechanical properties of cold metal transfer welding Mg/Al dissimilar metals. Mater Des 34:559–565

    Article  Google Scholar 

  23. Joseph A, Harwig D, Farson D, Richardson R (2003) Measurement and calculation of arc power and heat transfer efficiency in pulsed gas metal arc welding. Sci Technol Weld Join 8(6):400–406

    Article  Google Scholar 

  24. Koiotynskii A, Makhlin N, Poloskov S, Pavlenko G (2005) Comparison of methods of evaluating the thermal power of the arc welding process. Weld Int 19(8):636–639

    Article  Google Scholar 

  25. Wang XW, Huang Y, Zhang YM (2013) Droplet transfer model for laser-enhanced GMAW. Int J Adv Manuf Technol 64(1):207–217

    Article  Google Scholar 

  26. Haidar J (1998) Predictions of metal droplet formation in gas metal arc welding II. J Appl Phys 84(7):3530–3540

    Article  Google Scholar 

  27. Choi JH, Lee J, Yoo CD (2001) Dynamic force balance model for metal transfer analysis in arc welding. J Phys D Appl Phys 34:2658–2664

    Article  Google Scholar 

  28. Chen YB, Feng JC, Li LQ, Li Y, Chang S (2013) Effect of welding position on droplet transfer in CO2 laser-MAG hybrid welding. Int J Adv Manuf Technol 68(5–8):1351–1359

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Lv, Y., Xu, B. et al. Investigation of droplet transfer behaviours in cold metal transfer (CMT) process on welding Ti-6Al-4V alloy. Int J Adv Manuf Technol 80, 2007–2014 (2015). https://doi.org/10.1007/s00170-015-7197-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7197-9

Keywords

Navigation